Integer Conic Function Minimization Based on the Comparison Oracle

  • Dmitriy V. GribanovEmail author
  • Dmitriy S. Malyshev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)


Let \(f : \mathbb {R}^n \rightarrow \mathbb {R}\) be a conic function and \(x_0 \in \mathbb {R}^n\). In this note, we show that the shallow separation oracle for the set \(K = \{x \in \mathbb {R}^n : f(x) \le f(x_0)\}\) can be polynomially reduced to the comparison oracle of the function f. Combining these results with known results of D. Dadush et al., we give an algorithm with \((O(n))^n \log R\) calls to the comparison oracle for checking the non-emptiness of the set \(K \cap \mathbb {Z}^n\), where K is included to the Euclidean ball of a radius R. Additionally, we give a randomized algorithm with the expected oracle complexity \((O(n))^n \log R\) for the problem to find an integral vector that minimizes values of f on an Euclidean ball of a radius R. It is known that the classes of convex, strictly quasiconvex functions, and quasiconvex polynomials are included into the class of conic functions. Since any system of conic functions can be represented by a single conic function, the last facts give us an opportunity to check the feasibility of any system of convex, strictly quasiconvex functions, and quasiconvex polynomials by an algorithm with \((O(n))^n \log R\) calls to the comparison oracle of the functions. It is also possible to solve a constraint minimization problem with the considered classes of functions by a randomized algorithm with \((O(n))^n \log R\) expected oracle calls.


Nonlinear integer programming Conic function Convex function Quasiconvex function Comparison oracle Separation oracle Membership oracle Convex set Integral lattice 


  1. 1.
    Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quadratic polynomials and related problems. Math. Program. 137(1–2), 453–476 (2013). Scholar
  2. 2.
    Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geometry. SIAM J. Optim. 27(2), 866–889 (2017). Scholar
  3. 3.
    Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Mixed integer programming with convex/concave constraints: fixed-parameter tractability and applications to multicovering and voting. CoRR, (2017)
  4. 4.
    Chirkov, A.: Minimization of quasi-convex function on two-dimensional integer lattice. Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, Mat. Model. Optim. Upr. 1, 227–238 (2003). (in Russian)Google Scholar
  5. 5.
    Chirkov, A., Gribanov, D., Malyshev, D., Pardalos, P., Veselov, S., Zolotykh, A.: On the complexity of quasiconvex integer minimization problem. J. Glob. Optim. 73(4), 761–788 (2019). Scholar
  6. 6.
    Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. ProQuest LLC, Ann Arbor, MI. thesis (Ph.D.), Georgia Institute of Technology (2012)Google Scholar
  7. 7.
    Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 11), pp. 580–589 (2011).
  8. 8.
    De Loera, J., Hemmecke, R., Koppe, M., Weismantel, R.: Integer polynomial optimization in fixed dimension. Math. Oper. Res. 31(1), 147–153 (2006). Scholar
  9. 9.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Berlin (1993). corrected edCrossRefzbMATHGoogle Scholar
  10. 10.
    Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21(4), 543–556 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heinz, S.: Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM Control Optim. Calc. Var. 14(4), 795–801 (2008). Scholar
  12. 12.
    Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer minimization. Math. Program. 126(1), 97–117 (2011). Scholar
  13. 13.
    Hildebrand, R., Köppe, M.: A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n \log n)}\). Discret. Optim. 10(1), 69–84 (2013). Scholar
  14. 14.
    Khachiyan, L., Porkolab, L.: Integer optimization on convex semialgebraic sets. Discret. Comput. Geom. 23(2), 207–224 (2000). Scholar
  15. 15.
    Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). Scholar
  16. 16.
    Nemirovski, A., Yudin, D.: Evaluation of the information complexity of mathematical programming problems. Ekonomika i Matematicheskie Metody 13(2), 3–45 (1976). (in Russian)Google Scholar
  17. 17.
    Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)Google Scholar
  18. 18.
    Oertel, T.: Integer convex minimization in low dimensions. Thes. doct. phylosophy. Eidgenössische Technische Hochschule, Zürich (2014)Google Scholar
  19. 19.
    Oertel, T., Wagner, C., Weismantel, R.: Convex integer minimization in fixed dimension. (2012)
  20. 20.
    Oertel, T., Wagner, C., Weismantel, R.: Integer convex minimization by mixed integer linear optimization. Oper. Res. Lett. 42(6), 424–428 (2014). Scholar
  21. 21.
    Veselov, S., Gribanov, D., Zolotykh, N., Malishev, D., Chirkov, A.: Minimizing a symmetric quasiconvex function on a two-dimensional lattice. J. Appl. Ind. Math. 12(3), 587–594 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
  2. 2.National Research University Higher School of EconomicsNizhny NovgorodRussian Federation

Personalised recommendations