• Joshua PellegEmail author
Part of the Engineering Materials book series (ENG.MAT.)


In this chapter the structures of the CoSi2, NiSi2, MoSi2, WSi2, FeSi2 and TiSi2 silicides are presented. Of these silicides CoSi2 and NiSi2 are cubic, MoSi2, WSi2 and FeSi2 are tetragonal while TiSi2 is orthorhombic. Two phases, C49 (base-centered orthorhombic) and the C54 (face-centered orthorhombic) are of importance, although the C49 variant is metastable. CoSi2 is by far the most important silicide phase because its low electrical resistivity. NiSi2 is also used for device applications. β-FeSi2 is of use in optoelectronics in Si-based devices. Electrical resistivity is the main characteristics of these silicides.


  1. D.Z. Chi, Thin Solid Films 537, 1 (2013)CrossRefGoogle Scholar
  2. S.J. Clark, H.M. Al-Allak, S. Brand, R.A. Abram, Phys. Rev. B 58, 10389 (1998). Beta lattice parametersCrossRefGoogle Scholar
  3. E.G. Colgan, M. Mäenpäa, M. Finetti, M.A. Nicolet, J. Electron. Mater. 12, 413 (1983)Google Scholar
  4. J. Derrien, J. Chewrier, V. Le Thanh, J.E. Mahan, App. Surf. Sci. 56, 382 (1992) Google Scholar
  5. S. Hajjar, G. Garreau, S. Pelletier, P. Bertoncini, P. Wetzel, G. Gewinner, M. Imhoff, C. Pirri, Surf. Sci. 532–535, 940 (2003)CrossRefGoogle Scholar
  6. T. Hirano, M. Kaise, J. Appl. Phys. 68, 827 (1990)CrossRefGoogle Scholar
  7. S. Itoh, T. Fujiwara, Phys. Rev. B 45, 3685 (1992)CrossRefGoogle Scholar
  8. I. Jarrige, N. Capron, P. Jonnard, Phys. Rev. B 79, 035117 (2009)CrossRefGoogle Scholar
  9. C. Le Corre, J.M. Genin, Phys. Status Solidi, (b) 51, K85 (1972)Google Scholar
  10. F. Mammoliti, M.G. Grimaldi, F. La Via, J. Appl. Phys. 92, 3147 (2002)CrossRefGoogle Scholar
  11. L.F. Mattheiss, Phys. Rev. B 45, 3252 (1992)CrossRefGoogle Scholar
  12. Y. Mori, H. Nakano, G. Sakane, G. Aquilanti, H. Udono, K. Takarabe, Phys. Stat. Solidi B 246, 541 (2009)CrossRefGoogle Scholar
  13. S.P. Muraraka, Silicides for VLSI Applications (Academic Press, 1983a), p. 6Google Scholar
  14. S.P. Muraraka, Silicides for VLSI Applications (Academic Press, 1983b), p. 31Google Scholar
  15. S.P. Murarka, Intermetallics 3, 173 (1995)CrossRefGoogle Scholar
  16. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Appl. Phys. 84, 4891 (1998)CrossRefGoogle Scholar
  17. A.H. Reader, A.H. Van Ommen, P.J.W. Weijs, R.A.M. Wolters, O.J. Oostra, Rep. Prog. Phys. 56, 1397 (1993)CrossRefGoogle Scholar
  18. K. Shudo, T. Aoki, S. Ohno, K. Yamazaki, F. Nakayama, M. Tanaka, T. Okuda, A. Harasawa, I. Matsuda, T. Kakizaki, M. Uchiyama, J. Electron Spectrosc. Relat. Phenom. 192, 35 (2014)CrossRefGoogle Scholar
  19. R.T. Tung, J. Cryst. Growth 209, 795 (2000)CrossRefGoogle Scholar
  20. Y. Umakoshi, T. Sakagami, T. Hirano, T. Yamane, Acta Metall. Mater. 38, 909 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations