Grain Size Effect on Mechanical Properties

  • Joshua PellegEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Hardness tests is a simple, cost saving method to estimate mechanical properties of material, requiring commonly available equipment and therefore an attractive method. Relationships between hardness and other mechanical properties exist, the well known one is that of Tabor for the tensile stress evaluation. This chapter emphasizes the grain size effect on the mechanical properties. Small grain size improves static properties such as tensile and yield stresses while large grains enhance creep resistance. A main factor in concentrating on MoSi2 and Ti5Si3 is the availability of data but also due to their excellent high temperature properties. The Hall–Petch relation between hardness and grain size is discussed in this chapter.


  1. D.E. Alman, K.G. Shaw, N.S. Stoloff, K. Rajan, Mater. Sci. Eng. A 155, 95 (1992)CrossRefGoogle Scholar
  2. A. Bhattacharya, J.J. Petrovic, J. Am. Ceram. Soc. 74, 2700 (1991)CrossRefGoogle Scholar
  3. P.H. Boldt, J.D. Embury, G.C. Weatherly, Mat. Sci. Eng. A 155, 251 (1992)CrossRefGoogle Scholar
  4. R.G. Castro, R.W. Smith, A.D. Rollett, P. Stanek, Scr. Met. 26, 207 (1992)CrossRefGoogle Scholar
  5. P.J. Counihan, A. Crawford, N.N. Thadhan, Mater. Sci. Eng. A 267, 26 (1999)CrossRefGoogle Scholar
  6. R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, W. Yang, Mater. Sci. Eng. A 155, 147 (1992)CrossRefGoogle Scholar
  7. R. Keiffer, E. Cerwenka, Z. Metal. 43, 101 (1952)Google Scholar
  8. J. Li, D. Jiang, S. Tan, J. Eur. Ceram. Soc. 22, 551 (2002)Google Scholar
  9. S. Maloy, A.H. Heur, J. Lewandoski, J. Petrovic, J. Am. Ceram. Soc. 74, 2704 (1991)CrossRefGoogle Scholar
  10. D.P. Mason, D.C. Van Aken, Scripta Met. Mater. 28, 185 (1993)CrossRefGoogle Scholar
  11. K.S. Min, A.J. Ardell, S.J. Eck, F.C. Chen, J. Mater. Sci. 30, 5479 (1995)Google Scholar
  12. R. Mitra, Met. Mater. Trans. A 29A, 1629 (1998)CrossRefGoogle Scholar
  13. R. Mitra, N. Eswara Prasad, Y.R. Mahajan, Trans. Indian Inst. Met. 61, 427(2008)Google Scholar
  14. J.J. Petrovic, Mater. Sci. Eng. A 192/193, 31 (1995)Google Scholar
  15. R. Rosenkranz, G. Frommeyer, W. Smarsly, Mater. Sci. Eng. A 152, 288 (1992)Google Scholar
  16. S. Ruess, H. Vehoff, Scripta Metall. Mater. 24, 1021–1026 (1990)Google Scholar
  17. K. Sadananda, C.R. Feng, R. Mitra, S.C. Deevi, Mater. Sci. Eng. A 261, 223 (1999)CrossRefGoogle Scholar
  18. R.B. Schwartz, S.R. Srinivasan, J.J. Petrovic, C.J. Maggiore, Mat. Sci. Eng. A 155, 75 (1992)CrossRefGoogle Scholar
  19. A.S. Strogova, A.A. Kovalevskii, O.M. Komar, AASCIT J. Mater. 1, 123 (2015)Google Scholar
  20. A.J. Thom, M.K. Meyer, Y. Kim, M. Akinc, in Processing and Fabrication of Advanced Materials III, ed. by V.A. Ravi, T.S. Srivatsan, J.J. Moore et al. (TMS, Warrendale, PA, 1994), p. 413Google Scholar
  21. R. Tiwari, H. Herman, Mater. Sci. Eng. A 155, 95 (1992)CrossRefGoogle Scholar
  22. R.K. Wade, J. Am. Ceram. Soc. 75, 1682 (1992)CrossRefGoogle Scholar
  23. R.M. Walser, R.W. Bené, Appl. Phys. Lett. 28, 15 (1976)CrossRefGoogle Scholar
  24. L. Zhang, J. Wu, Acta Mater. 46(10), 3535 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations