Advertisement

Control and Automation for Miniaturized Microwave GSG Nanoprobing

  • Alaa Taleb
  • Denis PomorskiEmail author
  • Christophe Boyaval
  • Steve Arscott
  • Gilles Dambrine
  • Kamel Haddadi
Chapter

Abstract

The general objective addresses the challenge of the miniaturized microwave characterization of nanodevices. The method is based on a measurement setup that consists of a vector network analyzer (VNA) connected through coaxial cables to miniaturized homemade coplanar waveguide (CPW) probes (one signal contact and two ground contacts), which are themselves mounted on three-axis piezoelectric nanomanipulators SmarAct™. The device under test (DUT) is positioned on a sample holder equipped also with nanopositioners and a rotation system with μ-degree resolution. The visualization is carried out by a scanning electron microscope (SEM) instead of conventional optics commonly found in usual on-wafer probe stations. This study addresses the challenge related to the control of nanomanipulators in order to ensure precisely the contact between the probe tips and the DUT to be characterized. The DUT is inserted between the central ribbon and the ground planes of the coplanar test structure (width of the central ribbon = 2.3 μm, distance between the central ribbon and the ground planes = 1.8 μm). First, we use classical automatic linear tools to identify the transfer function of a system of three linear nanopositioners along the X, Y, and Z axes. This part allows the precise control of each nanomanipulator using LabVIEW™, with an overshoot of the final value (according to a minimal response time in X and Y) or without an overshoot of the final value (in order to avoid any crashing of the probe tips on the substrate in Z). Second, we propose an angular control methodology (using Matlab™) in order to align the probe tips on the CPW ports of the DUT. Finally, the detection of the points of interest (use of the Harris detector) allows one to determine the set point value of each linear nanopositioner X, Y, and Z. These three steps ensure the precise positioning of the probe tips to ensure accurate microwave characterization of the DUT.

Keywords

Microwave measurement On-wafer probe station Ground signal ground (GSG) probe Scanning electron microscopy (SEM) Control of nanomanipulators Identification and PID controller Image processing 

Acronyms

CPW

Coplanar waveguide

DUT

Device under test

GaN nanowires

Gallium nitride nanowires

GSG

Ground signal ground

HF

High frequency

HIL

Hardware-In-the-Loop

MEMS

Microelectromechanical systems

PID controller

Proportional–integral–derivative controller

RF

Radio frequency

SEM

Scanning electron microscope

SWNT

Single-walled nanotube

VNA

Vector network analyzer

Notes

Acknowledgment

This work is supported by the French National Research Agency (ANR) under the EquipEx Excelsior (www.excelsior-ncc.eu).

References

  1. 1.
    The International Technology Roadmap for Semiconductors (ITRS). (2013). Retrieved from http://www.itrs.net/Links/2013ITRS/2013Chapters/2013ERD.pdf.
  2. 2.
    Happy, H., Haddadi, K., Théron, D., Lasri, T., & Dambrine, G. (2014). Measurement techniques for RF nanoelectronic devices: New equipment to overcome the problems of impedance and scale mismatch. IEEE Microwave Magazine, 15(1), 30–39.CrossRefGoogle Scholar
  3. 3.
    Rumiantsev, A., & Doerner, R. (2013). RF Probe Technology. IEEE Microwave Magazine, 14, 46–58. CrossRefGoogle Scholar
  4. 4.
    Daffé, K., Dambrine, G., Von Kleist-Retzow, F., & Haddadi, K. (2016). RF wafer probing with improved contact repeatability using nanometer positioning. In 87th ARFTG Microwave Measurement Conference Dig, San Francisco, CA, pp. 1–4.Google Scholar
  5. 5.
    Yu, Z., & Burke, P. J. (2005). Microwave transport in single-walled carbon nanotubes. Nano Letters, 5(7), 1403–1406.CrossRefGoogle Scholar
  6. 6.
    Wallis, T., Imtiaz, A., Nembach, H., Bertness, K. A., Sanford, N. A., Blanchard, P. T., & Kabos, P. (2008). Calibrated broadband electrical characterization of nanowires. In 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, pp. 684–685.Google Scholar
  7. 7.
    Nougaret, L., Dambrine, G., Lepilliet, S., Happy, H., Chimot, N., Derycke, V., & Bourgoin, J.-P. (2010). Gigahertz characterization of a single carbon nanotube. Applied Physics Letters, 96(4), 042109-1–042109-3.CrossRefGoogle Scholar
  8. 8.
    Li, S., Yu, Z., Yen, S.-F., Tang, W. C., & Burke, P. J. (2004). Carbon nanotube transistor operation at 2.6 GHz. Nano Letters, 4(4), 753–756.CrossRefGoogle Scholar
  9. 9.
    Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S., & McEuen, P. L. (2005). Mixing at 50 GHz using a single-walled carbon nanotube transistor. Applied Physics Letters, 87(15), 153111.CrossRefGoogle Scholar
  10. 10.
    El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015). Integrated MEMS RF probe for SEM station—Pad size and parasitic capacitance reduction. IEEE Microwave and Wireless Components Letters, 25(10), 693–695.CrossRefGoogle Scholar
  11. 11.
    Marzouk, J., Arscott, S., El Fellahi, A., Haddadi, K., Lasri, T., Boyaval, C., & Dambrine, G. (2015). MEMS probes for on-wafer RF microwave characterization of future microelectronics: design, fabrication and characterization. Journal of Micromechanics and Microengineering—IOPscience, 25(7).Google Scholar
  12. 12.
    El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015, September). Nanorobotic RF probe station for calibrated on-wafer measurements. In 45th European Microwave Conference, Paris, France, pp. 1–4.Google Scholar
  13. 13.
    Reichelt, R. (2007). Scanning electron microscopy. In Science of microscopy (pp. 133–272). New-York: Springer.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    National instruments NI. LabVIEW control design user manual.Google Scholar
  16. 16.
    Halvorsen, H.-P., Department of Electrical Engineering, Information Technology and Cybernetics. Control and simulation in LabVIEW.Google Scholar
  17. 17.
    Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In 4th Alvey Vision Conference, pp. 147–151.Google Scholar
  18. 18.
    Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden et al. (Eds.), ECCV 2002, LNCS 2350 (pp. 128–142). Berlin; Heidelberg: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alaa Taleb
    • 1
  • Denis Pomorski
    • 1
    • 2
    Email author
  • Christophe Boyaval
    • 3
  • Steve Arscott
    • 3
  • Gilles Dambrine
    • 3
  • Kamel Haddadi
    • 2
    • 3
  1. 1.Univ. Lille, CNRS, Centrale LilleUMR 9189—CRIStAL—Centre de Recherche en Informatique, Signal et Automatique de LilleLilleFrance
  2. 2.Univ. LilleIUT A—Département GEIILilleFrance
  3. 3.Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. ValenciennesUMR 8520—IEMNLilleFrance

Personalised recommendations