Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation Systems of Flying Robots in a Developed Infrastructure

  • Oleksandr Sotnikov
  • Vladimir G. KartashovEmail author
  • Oleksandr Tymochko
  • Oleg Sergiyenko
  • Vera Tyrsa
  • Paolo Mercorelli
  • Wendy Flores-Fuentes


The analysis of the known methods and navigation systems of flying robots (FR) was performed. Among them, because of a number of shown below reasons, the most preferable are passive combined correlation-extreme systems which implement the survey-comparative method. A basic model for the radiometric channel operation of the correlation-extreme navigation systems is proposed. The factors that lead to distortions of the decisive function formed by the combined correlation-extreme navigation system of flying robots in a developed infrastructure are allocated. A solution of the problem of autonomous low-flying flying robot navigation in a developed infrastructure using the radiometric channel extreme correlation navigation systems (CENS), when the size of the solid angle of associated object is much larger than the size of the partial antenna directivity diagram (ADD), is proposed. The appearance possibility of spurious objects that are close in parameters (geometric dimensions and brightness) to the anchor object, depending on the current image sight geometry formed by the optoelectronic channel of the combined CENS, is taken into account.


Radiometrics Electronic Navigation Flying robots 



Automated control systems


Antenna directivity diagram


Correlation analysis field


Coefficient of cross correlation


Channel extreme correlation navigation systems


CENS in which information is currently removed at a point


CENS in which information is currently removed from a line


CENS in which information is currently removed from an area (frame)


Current image


Control systems


Decision function


Electromagnetic radiation


False object


Flying robots


Fixed wings unmanned aerial vehicle


Informational field


Inertial navigation system


Low-pass filter


Navigation system


Object of binding


Propagation medium


Reference image




Radiometric imaging


Rotary wings unmanned aerial vehicle


Standard deviation


Sensors of different physical nature


Source image


Sighting surface


Technical navigation means


Unmanned aerial vehicle


  1. 1.
    Leutenegger, S., et al. (2016). Flying robots. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics. Springer handbooks (pp. 623–670). Cham: Springer.CrossRefGoogle Scholar
  2. 2.
    Basset, P. M., Tremolet, A., & Lefebvre, T. (2014). Rotary wing UAV pre-sizing: Past and present methodological approaches at onera. AerospaceLab, 1–12.Google Scholar
  3. 3.
    Taha, H., Kiani, M., & Navarro, J. (2018). Experimental demonstration of the vibrational stabilization phenomenon in bio-inspired flying robots. IEEE Robotics and Automation Letters, 3(2), 643–647.CrossRefGoogle Scholar
  4. 4.
    Beard, R. W., Ferrin, J., & Humpherys, J. (2014). Fixed wing UAV path following in wind with input constraints. IEEE Transactions on Control Systems Technology, 22(6), 2103–2117.CrossRefGoogle Scholar
  5. 5.
    Lindner, L., Sergiyenko, O., RodrÐguez-Quiñonez, J., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Murrieta-Rico, F. N., & Tyrsa, V. (2016). Mobile robot vision system using continuous laser scanning for industrial application. Industrial Robot, 43(4), 360–369.CrossRefGoogle Scholar
  6. 6.
    Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., RodrÐguez-Quiñonez, J., Murrieta-Rico, F., Ivanov, M., Tyrsa, V., & Basaca, L. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, 44(4), 532–541.CrossRefGoogle Scholar
  7. 7.
    Scaramuzza, D., et al. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics & Automation Magazine, 21(3), 26–40.CrossRefGoogle Scholar
  8. 8.
    Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics & Automation Magazine, 19(1), 24–39.CrossRefGoogle Scholar
  9. 9.
    Song, G., Yin, K., Zhou, Y., & Cheng, X. (2009). A surveillance robot with hopping capabilities for home security. IEEE Transactions on Consumer Electronics, 55(4), 2034–2039.CrossRefGoogle Scholar
  10. 10.
    Finn, R. L., & Wright, D. (2012). Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law & Security Review, 28(2), 184–194.CrossRefGoogle Scholar
  11. 11.
    Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.CrossRefGoogle Scholar
  12. 12.
    Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15.CrossRefGoogle Scholar
  13. 13.
    Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., & Scaramuzza, D. (2016). Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. Journal of Field Robotics, 33(4), 431–450.CrossRefGoogle Scholar
  14. 14.
    Sotnikov, A. M., & Tarshin, V. A. (2013). Problemy i perspektivy razvitiya navigatsionnoy podderzhki vozdushnykh sudov. Zbirnyk naukovykh prats’ Kharkivs’koho universytetu Povitryanykh Syl, 3(36), 57–63. [In Russian].Google Scholar
  15. 15.
    Sotnikov, O. M., Tarshin, V. A., & Otkryto, P. V. (2013). Problemy i pryamoye razvitiye yadro-spetsificheskikh ekstremal’nykh sistem, nalozhennykh kerovanami apparatury. Sovremennyye informatsionnyye tekhnologii v sfere oborony bez oborony, 3(18), 93–96. [In Russian].Google Scholar
  16. 16.
    Keller, J., Thakur, D., Likhachev, M., Gallier, J., & Kumar, V. (2017). Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions. IEEE Transactions on Automation Science and Engineering, 14(1), 17–24.CrossRefGoogle Scholar
  17. 17.
    Li, H., & Savkin, A. V. (2018). Wireless sensor network based navigation of micro flying robots in the industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3524–3533.CrossRefGoogle Scholar
  18. 18.
    Somov, Y., Butyrin, S., Somov, S., & Somova, T. (2017). In-flight calibration, alignment and verification of an astroinertial attitude determination system for free-flying robots and land-survey satellites. In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, pp. 474–478.Google Scholar
  19. 19.
    Sotnikov, A. M., Antyufeyev, V. I., Bykov, V. N., Grichanyuk, A. M. et al. (2014). Matrichnyye radiometricheskiye korrelyatsionno-ekstremal’nyye sistemy navigatsii letatel’nykh apparatov. Book: Ministerstvo obrazovaniya i nauki Ukrainy. KHNU imeni V.N. Karazina. 372p. [In Russian].Google Scholar
  20. 20.
    Sotnikov, A., Tarshyn, V., Yeromina, N., Petrov, S., & Antonenko, N. (2017). A method for localizing a reference object in a current image with several bright objects. Eastern-European Journal of Enterprise Technologies, 3(87), 68–74.CrossRefGoogle Scholar
  21. 21.
    Sotnikov, A. M., & Tarshin, V. A. (2012). Obosnovaniye printsipov postroyeniya i razvitiya modeli korrelyatsionno-ekstremal’noy sistemy navedeniya kombinirovannogo tipa. Sistema Upravleniya Navigatsiyey ta Zvozdku. K., 4(24), 7–11. [In Russian].Google Scholar
  22. 22.
    Sotnikov, A. M., Tantsiura, A. B., & Lavrov, O. Y. (2018). Calculating method of error calculations of the object coordinating platform free inertial navigation systems of unmanned aerial vehicle. Advanced Information Systems, 2(1), 32–41.CrossRefGoogle Scholar
  23. 23.
    SotnÐkov, O. M., Vorobey, O. M., & Tantsyura, O. B. (2018). ModelÐ potochnikh zobrazhen’, shcho formuyut’sya kanalami kombÐnovanoÐ̈ korelyatsÐyno-yekstremal’noÐ̈ sistemi navÐgatsÐÐ̈ bezpÐlotnogo lÐtal’nogo aparatu. SuchasnÐ ÍnformatsÐynÐ TekhnologÐÐ̈ u SferÐ Bezpeki ta Oboroni, 2(32), 29–38. [In Ukrainian].Google Scholar
  24. 24.
    Tarshin, V. A., Sotnikov, A. M., Sidorenko, R. G., & Mezentsev, A. V. (2015). Metodologiya otsenki informativnosti iskhodnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh navigatsionnykh system. Sistemy obrabotki informatsii, 10, 60–63. [In Russian].Google Scholar
  25. 25.
    Tarshin, V. A., Sotnikov, A. M., Sidorenko, R. G., & Megel’bey, V. V. (2015). Podgotovka etalonnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh sistem navigatsii na osnove formirovaniya polya fraktal’nykh razmernostey. Sistemi ozbroênnya Ð vÐys’kova tekhnÐka, 2, 142–144. [In Russian].Google Scholar
  26. 26.
    Tarshin, V. A., Sotnikov, A. M., & Sidorenko, R. G. (2015). Podgotovka etalonnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh sistem navigatsii na osnove ispol’zovaniya pryamogo korrelyatsionnogo analiza. Nauka Ð tekhnÐka povÐtryanikh sil zbroynikh sil ukraÐ̈ni, 2, 69–73. [In Russian].Google Scholar
  27. 27.
    Smelyakov, K. S., Ruban, I. V., Smelyakov, S. V., & Tymochko, О. І. (2005). Segmentation of small-sized irregular images. In Proceeding of IEEE East-West Design & Test Workshop (EWDTW’05), Odessa, pp. 235–241.Google Scholar
  28. 28.
    Hernandez, W., & Mendez, A. (2018). Application of principal component analysis to image compression. In Statistics-Growing Data Sets and Growing Demand for Statistics. IntechOpen.Google Scholar
  29. 29.
    Shen, Z., & Song, E. (2018). Dynamic filtering of sparse signals via L1 minimization with variant parameters. In 2018 37th Chinese Control Conference (CCC), Wuhan, pp. 4409–4414.Google Scholar
  30. 30.
    Ham, B., Cho, M., & Ponce, J. (2018). Robust guided image filtering using nonconvex potentials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1), 192–207.CrossRefGoogle Scholar
  31. 31.
    Tymochko, О. І., & Podorozhnyak, А. О. (2007). Lokalizatsiya ob’ektu poshuku na potochnomu zobrazhenni navigatsiynoy systemy z raiometrychnymy datchykamy. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitryanykh Syl, 1(13), 47–50. [In Ukrainian].Google Scholar
  32. 32.
    Sergiyenko, O., Hernandez, W., Tyrsa, V., Devia Cruz, L., Starostenko, O., & Pena-Cabrera, M. (2009). Remote sensor for spatial measurements by using optical scanning. Sensors, 9(7), 5477–5492.CrossRefGoogle Scholar
  33. 33.
    Sergiyenko, O. Y. (2010). Optoelectronic system for mobile robot navigation. Optoelectronics, Instrumentation and Data Processing, 46(5), 414–428.CrossRefGoogle Scholar
  34. 34.
    Garcia-Cruz, X. M., Sergiyenko, O. Y., Tyrsa, V., Rivas-Lopez, M., Hernandez-Balbuena, D., Rodriguez-Quiñonez, J. C., Basaca-Preciado, L. C., & Mercorelli, P. (2014). Optimization of 3D laser scanning speed by use of combined variable step. Optics and Lasers in Engineering, 54, 141–151.CrossRefGoogle Scholar
  35. 35.
    Básaca-Preciado, L. C., Sergiyenko, O. Y., RodrÐguez-Quinonez, J. C., GarcÐa, X., Tyrsa, V., Rivas-Lopez, M., Hernandez-Balbuena, D., Mercorelli, P., Podrygalo, M., Gurko, A., Tabakova, I., & Starostenko, O. (2014). Optical 3D laser measurement system for navigation of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.CrossRefGoogle Scholar
  36. 36.
    Cañas, N., Hernandez, W., González, G., & Sergiyenko, O. (2014). Controladores multivariables para un vehiculo autonomo terrestre: Comparación basada en la fiabilidad de software. RIAI-Revista Iberoamericana de Automática e Informática Industrial, 11(2), 179–190. [In Spanish].CrossRefGoogle Scholar
  37. 37.
    Straβberger, D., Mercorelli, P., Sergiyenko, O., & Decoupled, A. (2015). MPC for motion control in robotino using a geometric approach. Journal of Physics: Conference Series, 659, 1–10.Google Scholar
  38. 38.
    Sergiyenko, O. Y., Ivanov, M. V., Tyrsa, V. V., Kartashov, V. M., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., RodrÐguez-Quiñonez, J. C., Nieto- Hipólito, J. I., Hernandez, W., & Tchernykh, A. (2016). Data transferring model determination in robotic group. Robotics and Autonomous Systems, 83, 251–260.CrossRefGoogle Scholar
  39. 39.
    RodrÐguez-Quiñonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-lopez, M., Hernandez-Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1), 24–32.CrossRefGoogle Scholar
  40. 40.
    Sergiyenko, O., Tyrsa, V., Flores-Fuentes, W., Rodriguez-Quiñonez, J., & Mercorelli, P. (2018). Machine vision sensors. Journal of Sensors, 2018, 3202761.CrossRefGoogle Scholar
  41. 41.
    Sergiyenko, O., Flores-Fuentes, W., & Tyrsa, V. (2017). Methods to improve resolution of 3D laser scanning (p. 132). LAP LAMBERT Academic Publishing.Google Scholar
  42. 42.
    Sergiyenko, O., & Rodriguez-Quiñonez, J. C. (Eds.). (2016). Developing and applying optoelectronics in machine vision (p. 341). Hershey, PA: IGI Global.Google Scholar
  43. 43.
    Ivanov, M., Lindner, L., Sergiyenko, O., RodrÐguez-Quiñonez, J. C., Flores-Fuentes, W., & Rivas-López, M. (2019). Mobile robot path planning using continuous laser scanning. In Optoelectronics in machine vision-based theories and applications (pp. 338–372). IGI Global.
  44. 44.
    Sergiyenko, O. Y., Tyrsa, V. V., Devia, L. F., Hernandez, W., Starostenko, O., & Rivas Lopez, M. (2009). Dynamic laser scanning method for mobile robot navigation. In Proceedings of ICCAS-SICE 2009, ICROS-SICE International Joint Conference, Fukuoka, Japan, 18–21 August 2009, pp. 4884–4889.Google Scholar
  45. 45.
    Rivas, M., Sergiyenko, O., Aguirre, M., Devia, L., Tyrsa, V., & Rendón, I. Spatial data acquisition by laser scanning for robot or SHM task. In IEEE-IES Proceedings “International Symposium on Industrial Electronics” (ISIE-2008), Cambridge, UK, 30 of June–2 of July, 2008, pp. 1458–1463.Google Scholar
  46. 46.
    Básaca, L. C., RodrÐguez, J. C., Sergiyenko, O., Tyrsa, V. V., Hernández, W., Nieto Hipólito, J. I., & Starostenko, O. (2010). Resolution improvement of dynamic triangulation method for 3D vision system in robot navigation task. In Proceedings of IEEE-36th Annual Conference of IEEE Industrial Electronics (IECON-2010), Glendale-Phoenix, AZ, 7–10 November 2010, pp. 2880–2885.Google Scholar
  47. 47.
    Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: A versatile and scalable robot simulation framework. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp. 1321–1326.Google Scholar
  48. 48.
    Michel, O. (2004). Cyberbotics Ltd—WebotsTM: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 5, pp. 39–42.CrossRefGoogle Scholar
  49. 49.
    Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—A modular gazebo MAV simulator framework. Robot Operating System (ROS), 595–625.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Oleksandr Sotnikov
    • 1
  • Vladimir G. Kartashov
    • 2
    Email author
  • Oleksandr Tymochko
    • 3
  • Oleg Sergiyenko
    • 4
  • Vera Tyrsa
    • 4
  • Paolo Mercorelli
    • 5
  • Wendy Flores-Fuentes
    • 6
  1. 1.Scientific Center of Air ForcesKharkiv National Air Force University named after Ivan KozhedubKharkivUkraine
  2. 2.Kharkiv National University of RadioelectronicsKharkivUkraine
  3. 3.Kharkiv National Air Force University named after Ivan KozhedubKharkivUkraine
  4. 4.Universidad Autónoma de Baja CaliforniaMexicaliMexico
  5. 5.Leuphana University of LueneburgLueneburgGermany
  6. 6.Facultad de IngenierÐa MexicaliUniversidad Autónoma de Baja CaliforniaMexicaliMexico

Personalised recommendations