Advertisement

Real-Time Egocentric Navigation Using 3D Sensing

  • Justin S. Smith
  • Shiyu Feng
  • Fanzhe Lyu
  • Patricio A. VelaEmail author
Chapter

Abstract

This chapter proposes a hierarchical navigation system combining the benefits of perception space local planning and allocentric global planning. Perception space permits computationally efficient 3D collision checking, enabling safe navigation in environments that do not meet the conditions assumed by traditional navigation systems based on planar laser scans. Contributions include approaches for scoring and collision checking trajectories in perception space. Benchmarking results show the advantages of perception space collision checking over popular alternatives in the context of real-time local planning. Simulated experiments with multiple robotic platforms in several environments demonstrate the importance of 3D collision checking and the utility of a mixed representation hierarchical navigation system.

Keywords

Navigation 3D Local and global planning 

Notes

Acknowledgement

This work was supported in part by NSF Awards #1400256 and #1849333.

References

  1. 1.
    Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., et al. (2005). Principles of robot motion: Theory, algorithms, and implementation. Cambridge: MIT Press.zbMATHGoogle Scholar
  2. 2.
    LaValle, S. (2006). Planning algorithms. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  3. 3.
    Ivanov, M., Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Flores-Fuentes, W., & Rivas-Lopez, M. (2019). Mobile robot path planning using continuous laser scanning (pp. 338–372). Hershey: IGI Global.Google Scholar
  4. 4.
    Hart, P. E., Nilsson, N. J., & Raphael, B. (1968, July). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. Available: http://dx.doi.org/10.1007/BF01386390 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Stentz, A. T. (1994, May). Optimal and efficient path planning for partially-known environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’94) (Vol. 4, pp. 3310–3317).Google Scholar
  7. 7.
    Koenig, S., & Likhachev, M. (2005, June). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.CrossRefGoogle Scholar
  8. 8.
    Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S. (2008). Anytime search in dynamic graphs. Artificial Intelligence, 172(14), 1613–1643. Available: http://www.sciencedirect.com/science/article/pii/S000437020800060X MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    García, F. M., Kapadia, M., & Badler, N. I. (2014, May). Gpu-based dynamic search on adaptive resolution grids. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1631–1638).Google Scholar
  10. 10.
    Tsardoulias, E. G., Iliakopoulou, A., Kargakos, A., & Petrou, L. (2016, December). A review of global path planning methods for occupancy grid maps regardless of obstacle density. Journal of Intelligent & Robotic Systems, 84(1), 829–858.CrossRefGoogle Scholar
  11. 11.
    Takahashi, O., & Schilling, R. J. (1989, April). Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions on Robotics and Automation, 5(2), 143–150.CrossRefGoogle Scholar
  12. 12.
    Kavraki, L. E., Kolountzakis, M. N., & Latombe, J. (1998, February). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation, 14(1), 166–171.CrossRefGoogle Scholar
  13. 13.
    Bohlin, R., & Kavraki, L. E. (2000, April). Path planning using lazy PRM. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 521–528).Google Scholar
  14. 14.
    Belghith, K., Kabanza, F., Hartman, L., & Nkambou, R. (2006, May). Anytime dynamic path-planning with flexible probabilistic roadmaps. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 2372–2377).Google Scholar
  15. 15.
    van den Berg, J., Ferguson, D., & Kuffner, J. (2006, May). Anytime path planning and replanning in dynamic environments. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 2366–2371).Google Scholar
  16. 16.
    Frazzoli, E., Dahleh, M. A., & Feron, E. (2002). Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1), 116–129. http://arc.aiaa.org/doi/abs/10.2514/2.4856 CrossRefGoogle Scholar
  17. 17.
    Kuffner, J. J., & LaValle, S. M. (2000, April). RRT-connect: An efficient approach to single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 2, pp. 995–1001).Google Scholar
  18. 18.
    Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894. Available: http://ijr.sagepub.com/content/30/7/846.abstract zbMATHCrossRefGoogle Scholar
  19. 19.
    Kuwata, Y., Fiore, G. A., Teo, J., Frazzoli, E., & How, J. P. (2008, September). Motion planning for urban driving using RRT. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1681–1686).Google Scholar
  20. 20.
    Ferguson, D., Kalra, N., & Stentz, A. (2006, May). Replanning with RRTs. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 1243–1248).Google Scholar
  21. 21.
    Zucker, M., Kuffner, J., & Branicky, M. (2007, April). Multipartite RRTs for rapid replanning in dynamic environments. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 1603–1609).Google Scholar
  22. 22.
    Bruce, J., & Veloso, M. (2002, September). Real-time randomized path planning for robot navigation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 3, pp. 2383–2388).Google Scholar
  23. 23.
    Otte, M., & Frazzoli, E. (2015). RRT X: Real-time motion planning/replanning for environments with unpredictable obstacles (pp. 461–478). Cham: Springer International Publishing. Available: http://dx.doi.org/10.1007/978-3-319-16595-0_27 Google Scholar
  24. 24.
    Pivtoraiko, M., & Kelly, A. (2011). Kinodynamic motion planning with state lattice motion primitives. In Proceedings of the IEEE International Conference on Intelligent Robotic and Systems.Google Scholar
  25. 25.
    Hauser, K., Bretl, T., Harada, K., & Latombe, J.-C. (2008). Using motion primitives in probabilistic sample-based planning for humanoid robots. In S. Akella, N. Amato, W. Huang, & B. Mishra (Eds.), Algorithmic foundation of robotics VII. Springer Tracts in Advanced Robotics (Vol. 47, pp. 507–522). Berlin: Springer.Google Scholar
  26. 26.
    Frazzoli, E., Dahleh, M., & Feron, E. (2005). Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6), 1077–1091.CrossRefGoogle Scholar
  27. 27.
    Şucan, I. A., Moll, M., & Kavraki, L. (2012, December). The open motion planning library. IEEE Robotics & Automation Magazine, 19, 72–82. http://ompl.kavrakilab.org.CrossRefGoogle Scholar
  28. 28.
    Paranjape, A. A., Meier, K. C., Shi, X., Chung, S., & Hutchinson, S. (2013, November). Motion primitives and 3-d path planning for fast flight through a forest. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2940–2947).Google Scholar
  29. 29.
    Khatib, O. (1985, March). Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings. 1985 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 500–505).Google Scholar
  30. 30.
    Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501–518.CrossRefGoogle Scholar
  31. 31.
    Arslan, O., & Koditschek, D. (2016). Exact robot navigation using power diagrams. In IEEE International Conference on Robotics and Automation (pp. 1–8).Google Scholar
  32. 32.
    Hyun, N. P., Verriest, E. I., & Vela, P. A. (2015). Optimal obstacle avoidance trajectory generation using the root locus principle. In IEEE Conference on Decision and Control (pp. 626–631).Google Scholar
  33. 33.
    Sethian, J. (1999). Level sets methods and fast marching methods. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  34. 34.
    Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  35. 35.
    Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 59(4), 849–904.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ross, I. M., & Karpenko, M. (2012). A review of pseudospectral optimal control: From theory to flight. Annual Reviews in Control, 36(2), 182–197.CrossRefGoogle Scholar
  37. 37.
    Andersson, J., Gillis, J., Horn, G., Rawlings, J., & Diehl, M. (2018, July). CasADi: A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation.Google Scholar
  38. 38.
    Deits, R., & Tedrake, R. (2015). Efficient mixed-integer planning for UAVs in cluttered environments. In IEEE International Conference on Robotics and Automation (pp. 42–49).Google Scholar
  39. 39.
    Hyun, N., Vela, P., & Verriest, E. (2017). A new framework for optimal path planning of rectangular robots using a weighted l p norm. IEEE Robotics and Automation Letters, 2(3), 1460–1465.CrossRefGoogle Scholar
  40. 40.
    Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. (2018). Continuous-time Gaussian process motion planning via probabilistic inference. The International Journal of Robotics Research, 37(11), 1319–1340.CrossRefGoogle Scholar
  41. 41.
    Pham, Q. (2014). A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Transactions on Robotics, 30(6), 1533–1540.CrossRefGoogle Scholar
  42. 42.
    Schulman, J., Ho, J., Lee, A. X., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and Systems, 9(1), 1–10 (Citeseer).Google Scholar
  43. 43.
    Borenstein, J., & Koren, Y. (1989, September). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179–1187.CrossRefGoogle Scholar
  44. 44.
    Borenstein, J., & Koren, Y. (1991, June). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288.CrossRefGoogle Scholar
  45. 45.
    Ulrich, I., & Borenstein, J. (2000, April). Vfh/sup */: Local obstacle avoidance with look-ahead verification. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 3, pp. 2505–2511).Google Scholar
  46. 46.
    Nepal, K., Fine, A., Imam, N., Pietrocola, D., Robertson, N., & Ahlgren, D. J. (2009). Combining a modified vector field histogram algorithm and real-time image processing for unknown environment navigation. In Intelligent Robots and Computer Vision XXVI: Algorithms and Techniques (Vol. 7252, p. 72520G). Bellingham: International Society for Optics and Photonics.Google Scholar
  47. 47.
    An, D., & Wang, H. (2004, June). VPH: A new laser radar based obstacle avoidance method for intelligent mobile robots. In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788) (Vol. 5, pp. 4681–4685).Google Scholar
  48. 48.
    Gong, J., Duan, Y., Man, Y., & Xiong, G. (2007, August). VPH+: An enhanced vector polar histogram method for mobile robot obstacle avoidance. In 2007 International Conference on Mechatronics and Automation (pp. 2784–2788).Google Scholar
  49. 49.
    Minguez, J., & Montano, L. (2000, October). Nearness diagram navigation (ND): A new real time collision avoidance approach. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113) (Vol. 3, pp. 2094–2100).Google Scholar
  50. 50.
    Minguez, J., & Montano, L. (2004, February). Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation, 20(1), 45–59.CrossRefGoogle Scholar
  51. 51.
    Durham, J. W., & Bullo, F. (2008, September). Smooth nearness-diagram navigation. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 690–695).Google Scholar
  52. 52.
    Minguez, J., Montano, L., Simeon, T., & Alami, R. (2001, May). Global nearness diagram navigation (GND). In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 1, pp. 33–39).Google Scholar
  53. 53.
    Mujahad, M., Fischer, D., Mertsching, B., & Jaddu, H. (2010, October). Closest Gap based (CG) reactive obstacle avoidance Navigation for highly cluttered environments. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1805–1812).Google Scholar
  54. 54.
    Mujahed, M., Fischer, D., & Mertsching, B. (2013, September). Safe Gap based (SG) reactive navigation for mobile robots. In 2013 European Conference on Mobile Robots (ECMR) (pp. 325–330).Google Scholar
  55. 55.
    Sezer, V., & Gokasan, M. (2012). A novel obstacle avoidance algorithm: “Follow the Gap Method”. Robotics and Autonomous Systems, 60(9), 1123–1134. Available: http://www.sciencedirect.com/science/article/pii/S0921889012000838 CrossRefGoogle Scholar
  56. 56.
    Mujahed, M., & Mertsching, B. (2017, May). The admissible gap (AG) method for reactive collision avoidance. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1916–1921).Google Scholar
  57. 57.
    Bauer, R., Feiten, W., & Lawitzky, G. (1994). Steer angle fields: An approach to robust manoeuvring in cluttered, unknown environments. Robotics and Autonomous Systems, 12(3), 209–212.CrossRefGoogle Scholar
  58. 58.
    Feiten, W., Bauer, R., & Lawitzky, G. (1994, May). Robust obstacle avoidance in unknown and cramped environments. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation (Vol.3, pp. 2412–2417).Google Scholar
  59. 59.
    Buhmann, J., Burgard, W., Cremers, A., Fox, D., Hofmann, T., Schneider, F., et al. (1995). The Mobile Robot RHINO. AI Magazine, 16(1), 31–38.Google Scholar
  60. 60.
    Fox, D., Burgard, W., & Thrun, S. (1997, March). The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine, 4(1), 23–33.CrossRefGoogle Scholar
  61. 61.
    Stachniss, C., & Burgard, W. (2002). An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 1, pp. 508–513).Google Scholar
  62. 62.
    Brock, O., & Khatib, O. (1999). High-speed navigation using the global dynamic window approach. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) (Vol. 1, pp. 341–346).Google Scholar
  63. 63.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010). The Office Marathon: Robust navigation in an indoor office environment. In IEEE International Conference on Robotics and Automation (pp. 300–307).Google Scholar
  64. 64.
    Simmons, R. (1996, April). The curvature-velocity method for local obstacle avoidance. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 4, pp. 3375–3382).Google Scholar
  65. 65.
    Ko, N. Y., & Simmons, R. (1998, October). The lane-curvature method for local obstacle avoidance. In Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190) (Vol. 3, pp. 1615–1621).Google Scholar
  66. 66.
    Quinlan, S., & Khatib, O. (1993, May). Elastic bands: Connecting path planning and control. In [1993] Proceedings IEEE International Conference on Robotics and Automation (Vol. 2, pp. 802–807).Google Scholar
  67. 67.
    Khatib, M. (1996). Sensor-based motion control for mobile robots. Toulouse: LAAS-CNRS.Google Scholar
  68. 68.
    Roesmann, C., Feiten, W., Woesch, T., Hoffmann, F., & Bertram, T. (2012, May). Trajectory modification considering dynamic constraints of autonomous robots. In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1–6).Google Scholar
  69. 69.
    Rösmann, C., Hoffmann, F., & Bertram, T. (2017). Integrated online trajectory planning and optimization in distinctive topologies. Robotics and Autonomous Systems, 88, 142–153. http://www.sciencedirect.com/science/article/pii/S0921889016300495.CrossRefGoogle Scholar
  70. 70.
    Lindner, L., Sergiyenko, O., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodríguez-Quiñonez, J. C., et al. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: The International Journal of Robotics Research and Application, 44(4), 532–541.CrossRefGoogle Scholar
  71. 71.
    Sergiyenko, O., Ivanov, M., Tyrsa, V., Kartashov, V., Rivas-López, M., Hernández-Balbuena, D., et al. (2016). Data transferring model determination in robotic group. Robotics and Autonomous Systems, 83, 251–260.CrossRefGoogle Scholar
  72. 72.
    Ivanov, M., Sergiyenko, O., Tyrsa, V., Mercorelli, P., Kartashov, V., Perdomo, W., et al. (2018, October). Individual scans fusion in virtual knowledge base for navigation of mobile robotic group with 3D TVS. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (pp. 3187–3192).Google Scholar
  73. 73.
    Maier, D., Hornung, A., & Bennewitz, M. (2012, November). Real-time navigation in 3D environments based on depth camera data. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012) (pp. 692–697).Google Scholar
  74. 74.
    Murray, D., & Jennings, C. (1997, May). Stereo vision based mapping and navigation for mobile robots. In IEEE International Conference on Robotics Automation (Vol. 2, pp. 1694–1699).Google Scholar
  75. 75.
    Biswas, J., & Veloso, M. (2012, May). Depth camera based indoor mobile robot localization and navigation. In 2012 IEEE International Conference on Robotics and Automation (pp. 1697–1702).Google Scholar
  76. 76.
    Barry, A. J., Florence, P. R., & Tedrake, R. (2017). High-speed autonomous obstacle avoidance with pushbroom stereo. Journal of Field Robotics, 35(1), 52–68. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21741.CrossRefGoogle Scholar
  77. 77.
    Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., & Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings of the ICRA 2010 workshop.Google Scholar
  78. 78.
    Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., & Suppa, M. (2013). Stereo vision based indoor/outdoor navigation for flying robots. In IEEE International Conference on Intelligent Robots and Systems (pp. 3955–3962).Google Scholar
  79. 79.
    Lopez, B. T., & How, J. P. (2017, May). Aggressive 3-D collision avoidance for high-speed navigation. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5759–5765).Google Scholar
  80. 80.
    Matthies, L., Brockers, R., Kuwata, Y., & Weiss, S. (2014, May). Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3242–3249).Google Scholar
  81. 81.
    Cao, T., Xiang, Z., & Liu, J. (2015, October). Perception in disparity: An efficient navigation framework for autonomous vehicles with stereo cameras. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2935–2948.CrossRefGoogle Scholar
  82. 82.
    Matthies, L., Brockers, R., Kuwata, Y., & Weiss, S. (2014, May). Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3242–3249).Google Scholar
  83. 83.
    McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., & Kappen, H. (2017, April). Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone. IEEE Robotics and Automation Letters, 2(2), 1070–1076.CrossRefGoogle Scholar
  84. 84.
    Hrabar, S., Sukhatme, G. S., Corke, P., Usher, K., & Roberts, J. (2005, August). Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3309–3316).Google Scholar
  85. 85.
    Cao, T., Xiang, Z., & Liu, J. (2015, October). Perception in disparity: An efficient navigation framework for autonomous vehicles with stereo cameras. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2935–2948.CrossRefGoogle Scholar
  86. 86.
    Otte, M. W., Richardson, S. G., Mulligan, J., & Grudic, G. (2007, October). Local path planning in image space for autonomous robot navigation in unstructured environments. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2819–2826).Google Scholar
  87. 87.
    Cutting, J., Vishton, P., & Braren, P. (1995, October). How we avoid collisions with stationary and moving obstacles. Psychological Review, 102(4), 627–651.CrossRefGoogle Scholar
  88. 88.
    Fajen, B. R. (2013, July). Guiding locomotion in complex, dynamic environments. Frontiers in Behavioral Neuroscience, 7, 85.CrossRefGoogle Scholar
  89. 89.
    Vallar, G., Lobel, E., Galati, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (1999, January). A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Experimental Brain Research, 124(3), 281–286. https://doi.org/10.1007/s002210050624.CrossRefGoogle Scholar
  90. 90.
    Dillon, M. R., Persichetti, A. S., Spelke, E. S., & Dilks, D. D. (2018). Places in the brain: Bridging layout and object geometry in scene-selective cortex. Cerebral Cortex, 28(7), 2365–2374.CrossRefGoogle Scholar
  91. 91.
    Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331–1336.CrossRefGoogle Scholar
  92. 92.
    Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58(2), 137–176.CrossRefGoogle Scholar
  93. 93.
    Bonner, M., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences, 114(18), 4793–4798.CrossRefGoogle Scholar
  94. 94.
    Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Cambridge: MIT Press.Google Scholar
  95. 95.
    Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000, July). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164. https://doi.org/10.1007/s002210000375.CrossRefGoogle Scholar
  96. 96.
    Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250. http://www.sciencedirect.com/science/article/pii/S0010027700001050.CrossRefGoogle Scholar
  97. 97.
    Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626. https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.20298.CrossRefGoogle Scholar
  98. 98.
    Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. http://www.sciencedirect.com/science/article/pii/S136466130800199X.CrossRefGoogle Scholar
  99. 99.
    Wilber, A. A., Clark, B. J., Forster, T. C., Tatsuno, M., & McNaughton, B. L. (2014). Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. Journal of Neuroscience, 34(16), 5431–5446. http://www.jneurosci.org/content/34/16/5431.CrossRefGoogle Scholar
  100. 100.
    Smith, J., & Vela, P. (2017). Planning in perception space. In IEEE International Conference on Robotics and Automation (pp. 6204–6209).Google Scholar
  101. 101.
    Felzenszwalb, P., & Huttenlocher, D. (2012). Distance transforms of sampled functions. Theory of Computing, 8(19), 415–428.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011.Google Scholar
  103. 103.
    OctoMap, Github - octomap/octomap_mapping, Oct 2017. https://github.com/OctoMap/octomap_mapping.
  104. 104.
    Pan, J., Chitta, S., & Manocha, D. (2012, May). FCL: A general purpose library for collision and proximity queries. In 2012 IEEE International Conference on Robotics and Automation (pp. 3859–3866).Google Scholar
  105. 105.
    Brockers, R., Fragoso, A., Matthies, L. (2016). Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space representation. In Micro- and Nanotechnology Sensors, Systems, and Applications VIII (Vol. 9836). http://dx.doi.org/10.1117/12.2224695.
  106. 106.
    Asada, M., Tanaka, T., & Hosoda, K. (2016, April). Adaptive binocular visual servoing for independently moving target tracking. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (Vol. 3, pp. 2076–2081. http://ieeexplore.ieee.org/document/846335/.Google Scholar
  107. 107.
    Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1), 7–42. http://dx.doi.org/10.1023/A:1014573219977.zbMATHCrossRefGoogle Scholar
  108. 108.
    Hirschmuller, H. (2005, June). Accurate and efficient stereo processing by semi-global matching and mutual information. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (Vol. 2, pp. 807–814).Google Scholar
  109. 109.
    Jin, S., Cho, J., Pham, X. D., Lee, K. M., Park, S. Kim, M., et al. (2010, January). FPGA design and implementation of a real-time stereo vision system. IEEE Transactions on Circuits and Systems for Video Technology, 20(1), 15–26.CrossRefGoogle Scholar
  110. 110.
    Li, Y., Yang, C., Zhong, W., Li, Z., & Chen, S. (2017, January). High throughput hardware architecture for accurate semi-global matching. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 641–646).Google Scholar
  111. 111.
    Hernandez-Juarez, D., Chacón, A., Espinosa, A., Vázquez, D., Moure, J. C., & López, A. M. (2016). Embedded real-time stereo estimation via semi-global matching on the GPU. Procedia Computer Science, 80, 143–153.CrossRefGoogle Scholar
  112. 112.
    Sprunk, C., Röwekämper, J., Parent, G., Spinello, L., Tipaldi, G. D., Burgard, W., et al. (2016). An experimental protocol for benchmarking robotic indoor navigation. In Experimental Robotics (pp. 487–504). Berlin: Springer.CrossRefGoogle Scholar
  113. 113.
    Smith, J., Hwang, J., & Vela, P. (2018). Benchmark worlds for testing autonomous navigation algorithms. [Repository]. http://github.com/ivalab/NavBench.
  114. 114.
    Rockey, C. (2014). depthimage_to_laserscan. [Repository]. https://github.com/ros-perception/depthimage_to_laserscan.
  115. 115.
    Mihelich, P., Konolige, K., & Leibs, J. Github - ros-perception/image_pipeline/stereo _image_proc. https://github.com/ros-perception/image_pipeline.git.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Justin S. Smith
    • 1
  • Shiyu Feng
    • 2
  • Fanzhe Lyu
    • 1
  • Patricio A. Vela
    • 1
    Email author
  1. 1.Georgia Tech, School of Electrical and Computer EngineeringAtlantaUSA
  2. 2.Georgia Tech, School of Mechanical EngineeringAtlantaUSA

Personalised recommendations