Fuzzy Clustering and Fuzzy Co-clustering

  • Tin-Chih Toly ChenEmail author
  • Katsuhiro Honda
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Fuzzy co-clustering is a fundamental technique for summarizing the structural characteristics of cooccurrence information. In this chapter, following the brief introduction of fuzzy c-Means (FCM) clustering, FCM-induced fuzzy co-clustering model is reviewed with illustrative examples.


  1. 1.
    M.R. Anderberg, Cluster Analysis for Applications (Academic Press, New York, 1973)zbMATHGoogle Scholar
  2. 2.
    A.K. Jain, R.C. Dubes, Algorithms for Clustering Data (Prentice Hall, Englewood Cliffs, NJ, 1988)zbMATHGoogle Scholar
  3. 3.
    J.B. MacQueen, Some methods of classification and analysis of multivariate observations, in Proceeding of 5th Berkeley Symposium on Mathematics of Stats and Probability (1967), pp. 281–297Google Scholar
  4. 4.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, 1981)Google Scholar
  5. 5.
    C.-H. Oh, K. Honda, H. Ichihashi: Fuzzy clustering for categorical multivariate data, in Proceeding of Joint 9th IFSA World Congress and 20th NAFIPS International Conference (2001), pp. 2154–2159Google Scholar
  6. 6.
    J.C. Dunn, Well separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Höppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis (Wiley, 1999)Google Scholar
  8. 8.
    S. Miyamoto, H. Ichihashi, K. Honda, Algorithms for Fuzzy Clustering (Springer, 2008)Google Scholar
  9. 9.
    W. Wang, Y. Zhang, On fuzzy cluster validity indices. Fuzzy Sets Syst. 158, 2095–2117 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Miyamoto, M. Mukaidono, Fuzzy \(c\)-means as a regularization and maximum entropy approach, in Proceeding of the 7th International Fuzzy Systems Association World Congress, vol. 2. (1997), pp. 86–92Google Scholar
  11. 11.
    R.J. Hathaway, Another interpretation of the EM algorithm for mixture distributions. Stat. & Probab. Lett. 4, 53–56 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    C.M. Bishop, Neural Networks for Pattern Recognition (Clarendon Press, 1995)Google Scholar
  13. 13.
    K. Rose, E. Gurewitz, G. Fox, A deterministic annealing approach to clustering. Pattern Recognit. Lett. 11, 589–594 (1990)CrossRefGoogle Scholar
  14. 14.
    A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Series B, 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  15. 15.
    S. Miyamoto, K. Umayahara, Fuzzy clustering by quadratic regularization, in Proceeding 1998 IEEE International Conference Fuzzy Systems and IEEE World Congress. Computational Intelligence, vol. 2. (1998) pp. 1394–1399Google Scholar
  16. 16.
    H. Ichihashi, K. Miyagishi, K. Honda, Fuzzy \(c\)-means clustering with regularization by K-L information, in Proceeding of 10th IEEE International Conference on Fuzzy Systems, vol. 2. (2001) pp. 924–927Google Scholar
  17. 17.
    K. Honda, H. Ichihashi, Regularized linear fuzzy clustering and probabilistic PCA mixture models. IEEE Trans. Fuzzy Systems 13(4), 508–516 (2005)CrossRefGoogle Scholar
  18. 18.
    M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analysers. Neural Comput. 11(2), 443–482 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Honda, H. Ichihashi, Linear fuzzy clustering techniques with missing values and their application to local principal component analysis. IEEE Trans. Fuzzy Systems 12(2), 183–193 (2004)CrossRefGoogle Scholar
  20. 20.
    R.J. Hathaway, J.C. Bezdek, Switching regression models and fuzzy clustering. IEEE Trans. on Fuzzy Systems 1(3), 195–204 (1993)CrossRefGoogle Scholar
  21. 21.
    R.E. Quandt, A new approach to estimating switching regressions. J. Am. Stat. Assoc. 67, 306–310 (1972)CrossRefGoogle Scholar
  22. 22.
    J.C. Bezdek, J. Keller, R. Krishnapuram, N.R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (Kluwer, Boston, 1999)CrossRefGoogle Scholar
  23. 23.
    G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  24. 24.
    V. Gupta, G.S. Lehal, A survey of text summarization extractive techniques. J. Emerg. Technol. Web Intell. 2(3), 258–268 (2010)Google Scholar
  25. 25.
    K. Honda, A. Notsu, H. Ichihashi, Collaborative filtering by sequential user-item co-cluster extraction from rectangular relational data. Int. J. Knowl. Eng. Soft Data Parad. 2(4), 312–327 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Rigouste, O. Cappé, F. Yvon, Inference and evaluation of the multinomial mixture model for text clustering. Inf. Process. Manag. 43(5), 1260–1280 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. Saira Mian, D. Haussler, Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput. Appl. Biosci. 12(4), 327–345 (1996)Google Scholar
  28. 28.
    K. Kummamuru, A. Dhawale, R. Krishnapuram: Fuzzy co-clustering of documents and keywords, in Proceeding 2003 IEEE International Conference Fuzzy Systems, vol. 2. (2003), pp. 772–777Google Scholar
  29. 29.
    K. Honda, S. Oshio, A. Notsu, FCM-type fuzzy co-clustering by K-L information regularization, in Proceeding of 2014 IEEE International Conference on Fuzzy Systems (2014), pp. 2505–2510Google Scholar
  30. 30.
    T. Kondo, Y. Kanzawa, Fuzzy clustering methods for categorical multivariate data based on \(q\)-divergence. J. Adv. Comput. Intell. Intell. Inform. 22(4), 524–536 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Kanzawa, Bezdek-type fuzzified co-clustering algorithm. J. Adv. Comput. Intell. Intell. Inform. 19(6), 852–860 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Honda, S. Oshio, A. Notsu, Fuzzy co-clustering induced by multinomial mixture models. J. Adv. Comput. Intell. Intell. Inform. 19(6), 717–726 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1–2), 177–196 (2001)CrossRefGoogle Scholar
  34. 34.
    T. Goshima, K. Honda, S. Ubukata, A. Notsu, Deterministic annealing process for pLSA-induced fuzzy co-clustering and cluster splitting characteristics. Int. J. Approx. Reason. 95, 185–193 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial Engineering and ManagementNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations