Advertisement

Nonlinear Fuzzy Collaborative Forecasting Methods

  • Tin-Chih Toly Chen
  • Katsuhiro Honda
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Various nonlinear fuzzy methods have been applied to forecasting. For example, fuzzy inference systems (FISs), such as Mamdani FISs, Sugeno [or Takagi-Sugeno-Kang (TSK)] FISs and Tsukamoto FISs, are actually nonlinear fuzzy methods that have been extensively applied to short-term load.

References

  1. 1.
    R. Mamlook, O. Badran, E. Abdulhadi, A fuzzy inference model for short-term load forecasting. Energ. Policy 37(4), 1239–1248 (2009)CrossRefGoogle Scholar
  2. 2.
    A.K. Lohani, N.K. Goel, K.K.S. Bhatia, Improving real time flood forecasting using fuzzy inference system. J. Hydrol. 509, 25–41 (2014)CrossRefGoogle Scholar
  3. 3.
    P.C. Chang, C.H. Liu, A TSK type fuzzy rule based system for stock price prediction. Expert Syst. Appl. 34(1), 135–144 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Firat, M.E. Turan, M.A. Yurdusev, Comparative analysis of fuzzy inference systems for water consumption time series prediction. J. Hydrol. 374(3–4), 235–241 (2009)CrossRefGoogle Scholar
  5. 5.
    A.I. Arciniegas, I.E.A. Rueda, Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system. Utilities Policy 16(1), 39–48 (2008)CrossRefGoogle Scholar
  6. 6.
    F.J. Chang, Y.T. Chang, Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29(1), 1–10 (2006)CrossRefGoogle Scholar
  7. 7.
    M.A. Boyacioglu, D. Avci, An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst. Appl. 37(12), 7908–7912 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Singh, A. Kainthola, T.N. Singh, Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12(1), 40–45 (2012)CrossRefGoogle Scholar
  9. 9.
    B.B. Ekici, U.T. Aksoy, Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 38(5), 5352–5358 (2011)CrossRefGoogle Scholar
  10. 10.
    T. Chen, Y.C. Wang, Incorporating the FCM–BPN approach with nonlinear programming for internal due date assignment in a wafer fabrication plant. Robot. Comput.-Integr. Manuf. 26(1), 83–91 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Chen, Forecasting the yield of a semiconductor product with a collaborative intelligence approach. Appl. Soft Comput. 13(3), 1552–1560 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Chen, Y.C. Wang, H.R. Tsai, Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. Int. J. Adv. Manuf. Technol. 42(11–12), 1206–1216 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Chen, An effective fuzzy collaborative forecasting approach for predicting the job cycle time in wafer fabrication. Comput. Ind. Eng. 66(4), 834–848 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Chen, A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8(11), 7679–7696 (2012)Google Scholar
  16. 16.
    P.J.M. Van Laarhoven, W. Pedrycz, A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M.A.B. Promentilla, T. Furuichi, K. Ishii, N. Tanikawa, A fuzzy analytic network process for multi-criteria evaluation of contaminated site remedial countermeasures. J. Environ. Manag. 88, 479–495 (2008)CrossRefGoogle Scholar
  18. 18.
    V. Jain, S. Sakhuja, N. Thoduka, R. Aggarwal, A.K. Sangaiah, Supplier selection using fuzzy AHP and TOPSIS: a case study in the Indian automotive industry. Neural Comput. Appl. 29, 555–564 (2016)CrossRefGoogle Scholar
  19. 19.
    C. Kahraman, U. Cebeci, D. Ruan, Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. Int. J. Prod. Econ. 87, 171–184 (2004)CrossRefGoogle Scholar
  20. 20.
    J. Ignatius, A. Hatami-Marbini, A. Rahman, L. Dhamotharan, P. Khoshnevis, A fuzzy decision support system for credit scoring. Neural Comput. Appl. 29, 921–937 (2016)CrossRefGoogle Scholar
  21. 21.
    N. Foroozesh, R. Tavakkoli-Moghaddam, S.M. Mousavi, A novel group decision model based on mean–variance–skewness concepts and interval-valued fuzzy sets for a selection problem of the sustainable warehouse location under uncertainty. Neural Comput. Appl. 30, 3277–3293 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.C. Wang, T. Chen, A partial-consensus posterior-aggregation FAHP method—Supplier selection problem as an example. Mathematics 7(2), 179 (2019)CrossRefGoogle Scholar
  23. 23.
    T.L. Saaty, The Analytic Hierarchy Process (McGraw-Hill Education, New York, 1980)zbMATHGoogle Scholar
  24. 24.
    W.C. Wedley, Consistency prediction for incomplete AHP matrices. Math. Comput. Model. 17, 151–161 (1993)CrossRefGoogle Scholar
  25. 25.
    I.S. Cheng, Y. Tsujimura, M. Gen, T. Tozawa, An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets Syst. 76, 277–288 (1995)CrossRefGoogle Scholar
  26. 26.
    A. Kaufmann, M.M. Gupta, Fuzzy Mathematical Models in Engineering and Management Science (North-Holland, Amsterdam, 1998)zbMATHGoogle Scholar
  27. 27.
    T. Chen, A SOM-FBPN-ensemble approach with error feedback to adjust classification for wafer-lot completion time prediction. Int. J. Adv. Manuf. Technol. 37(7–8), 782–792 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Chen, Y.C. Lin, A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 16(01), 35–58 (2008)CrossRefGoogle Scholar
  29. 29.
    E. Ostrosi, J.B. Bluntzer, Z. Zhang, J. Stjepandić (2018) Car style-holon recognition in computer-aided design. J. Comput. Design Eng.Google Scholar
  30. 30.
    Z. Zhang, D. Xu, E. Ostrosi, L. Yu, B. Fan (2017) A systematic decision-making method for evaluating design alternatives of product service system based on variable precision rough set. J. Intell. Manuf.Google Scholar
  31. 31.
    T. Chen, Y.C. Wang, An agent-based fuzzy collaborative intelligence approach for precise and accurate semiconductor yield forecasting. IEEE Trans. Fuzzy Syst. 22(1), 201–211 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tin-Chih Toly Chen
    • 1
  • Katsuhiro Honda
    • 2
  1. 1.Department of Industrial Engineering and ManagementNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations