Advertisement

Introduction to Fuzzy Collaborative Forecasting Systems

  • Tin-Chih Toly Chen
  • Katsuhiro Honda
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Multiple analyses of a problem from diverse perspectives raise the chance that no relevant aspects of the problem will be ignored.

References

  1. 1.
    W. Pedrycz, Collaborative fuzzy clustering. Pattern Recognit. Lett. 23, 1675–1686 (2002)CrossRefGoogle Scholar
  2. 2.
    W. Pedrycz, Collaborative architectures of fuzzy modeling. Lect. Notes Comput. Sci. 5050, 117–139 (2008)CrossRefGoogle Scholar
  3. 3.
    W. Pedrycz, P. Rai, A multifaceted perspective at data analysis: a study in collaborative intelligent agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 38(4), 1062–1072 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Mitra, H. Banka, W. Pedrycz, Rough–fuzzy collaborative clustering. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36(4), 795–805 (2006)CrossRefGoogle Scholar
  5. 5.
    V. Loia, W. Pedrycz, S. Senatore, P-FCM: a proximity-based fuzzy clustering for user-centered web applications. Int. J. Approx. Reason. 34, 121–144 (2003)CrossRefGoogle Scholar
  6. 6.
    L.H. Son, HU-FCF: a hybrid user-based fuzzy collaborative filtering method in recommender systems. Expert Syst. Appl. Int. J. 41(15), 6861–6870 (2014)CrossRefGoogle Scholar
  7. 7.
    C.W.K. Leung, S.C.F. Chan, F.L. Chung, A collaborative filtering framework based on fuzzy association rules and multiple-level similarity. Knowl. Inf. Syst. 10(3), 357–381 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Amindoust, S. Ahmed, A. Saghafinia, A. Bahreininejad, Sustainable supplier selection: a ranking model based on fuzzy inference system. Appl. Soft Comput. 12(6), 1668–1677 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Chen, An effective fuzzy collaborative forecasting approach for predicting the job cycle time in wafer fabrication. Comput. Ind. Eng. 66(4), 834–848 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Chen, An application of fuzzy collaborative intelligence to unit cost forecasting with partial data access by security consideration. Int. J. Technol. Intell. Plann. 7(3), 201–214 (2011)Google Scholar
  11. 11.
    R. Poler, J.E. Hernandez, J. Mula, F.C. Lario, Collaborative forecasting in networked manufacturing enterprises. J. Manuf. Technol. Manage. 19(4), 514–528 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Ostrosi, L. Haxhiaj, S. Fukuda, Fuzzy modelling of consensus during design conflict resolution. Res. Eng. Design 23(1), 53–70 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Chen, A hybrid fuzzy and neural approach with virtual experts and partial consensus for DRAM price forecasting. Int. J. Innov. Comput. Inf. Control 8(1), 583–597 (2012)Google Scholar
  14. 14.
    E. Ostrosi, J.B. Bluntzer, Z. Zhang, J. Stjepandić, Car style-holon recognition in computer-aided design. J. Comput. Des. Eng. article in press (2018)Google Scholar
  15. 15.
    Z. Zhang, D. Xu, E. Ostrosi, L. Yu, B. Fan, A systematic decision-making method for evaluating design alternatives of product service system based on variable precision rough set. J. Intell. Manuf. article in press (2017)Google Scholar
  16. 16.
    N. Cheikhrouhou, F. Marmier, O. Ayadi, P. Wieser, A collaborative demand forecasting process with event-based fuzzy judgements. Comput. Ind. Eng. 61(2), 409–421 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Chen, A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8(11), 7679–7696 (2012)Google Scholar
  18. 18.
    T. Chen, A heterogeneous fuzzy collaborative intelligence approach for forecasting the product yield. Appl. Soft Comput. 57, 210–224 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Chen, Y.C. Lin, A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 16(01), 35–58 (2008)CrossRefGoogle Scholar
  20. 20.
    T. Chen, An agent-based fuzzy collaborative intelligence approach for predicting the price of a dynamic random access memory (DRAM) product. Algorithms 5(2), 304–317 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Chen, Y.C. Wang, An agent-based fuzzy collaborative intelligence approach for precise and accurate semiconductor yield forecasting. IEEE Trans. Fuzzy Syst. 22(1), 201–211 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tin-Chih Toly Chen
    • 1
  • Katsuhiro Honda
    • 2
  1. 1.Department of Industrial Engineering and ManagementNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations