Advertisement

Nadine Humanoid Social Robotics Platform

  • Manoj RamanathanEmail author
  • Nidhi Mishra
  • Nadia Magnenat Thalmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

Developing a social robot architecture is very difficult as there are countless possibilities and scenarios. In this paper, we introduce the design of a generic social robotics architecture deployed in Nadine social robot, that can be customized to handle any scenario or application, and allows her to express human-like emotions, personality, behaviors, dialog. Our design comprises of three layers, namely, perception, processing and interaction layer and allows modularity (add/remove sub-modules), task or environment based customizations (for example, change in knowledge database, gestures, emotions). We noticed that it is difficult to do a precise state of the art for robots as each of them might be developed for different tasks, different work environment. The robots could have different hardware that also makes comparison challenging. In this paper, we compare Nadine social robot with state of art robots on the basis of social robot characteristics such as speech recognition and synthesis, gaze, face, object recognition, affective system, dialog interaction capabilities, memory.

Keywords

Social robotics Generic robotics architecture Nadine-social robot Human-robot interaction 

Notes

Acknowledgements

This research is supported by the BeingTogether Centre, a collaboration between Nanyang Technological University (NTU) Singapore and University of North Carolina (UNC) at Chapel Hill. The BeingTogether Centre is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its International Research Centres in Singapore Funding Initiative.

References

  1. 1.
  2. 2.
  3. 3.
    Beck, A., Zhijun, Z., Magnenat-Thalmann, N.: Motion control for social behaviors. In: Magnenat-Thalmann, N., Yuan, J., Thalmann, D., You, B.-J. (eds.) Context Aware Human-Robot and Human-Agent Interaction. HIS, pp. 237–256. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-19947-4_11CrossRefGoogle Scholar
  4. 4.
    Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 1146–1153. Morgan Kaufmann Publishers Inc., San Francisco (1999). http://dl.acm.org/citation.cfm?id=646307.687601
  5. 5.
    Ge, S., et al.: Design and development of Nancy, a social robot. In: International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 568–573, November 2011Google Scholar
  6. 6.
    Goertzel, B., Mossbridge, J., Monroe, E., Hanson, D., Yu, G.: Humanoid robots as agents of human consciousness expansion. CoRR abs/1709.07791 (2017). http://arxiv.org/abs/1709.07791
  7. 7.
    Han, J., Park, I.W., Park, M.: Outreach education utilizing humanoid type agent robots. In: Proceedings of the 3rd International Conference on Human-Agent Interaction, HAI 2015, pp. 221–222 (2015).  https://doi.org/10.1145/2814940.2814980
  8. 8.
    Holthaus, P., Pitsch, K., Wachsmuth, S.: How can I help? Spatial attention strategies for a receptionist robot. Int. J. Soc. Rob. 3(4), 383–393 (2011)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Iwata, H., Sugano, S.: Design of human symbiotic robot TWENDY-ONE. In: IEEE International Conference on Robotics and Automation, pp. 580–586, May 2009Google Scholar
  11. 11.
    Kajita, S., et al.: Cybernetic human HRP-4C: a humanoid robot with human-like proportions. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 301–314. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19457-3_18CrossRefGoogle Scholar
  12. 12.
    Meghdari, A., Alemi, M., Khamooshi, M., Amoozandeh, A., Shariati, A., Mozafari, B.: Conceptual design of a social robot for pediatric hospitals. In: International Conference on Robotics and Mechatronics, pp. 566–571, October 2016Google Scholar
  13. 13.
    Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 50–56, August 2008Google Scholar
  14. 14.
    Oh, J.H., Hanson, D., Kim, W.S., Han, I.Y., Kim, J.Y., Park, I.W.: Design of android type humanoid robot albert HUBO. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1428–1433, October 2006Google Scholar
  15. 15.
    Orejana, J.R., MacDonald, B.A., Ahn, H.S., Peri, K., Broadbent, E.: Healthcare robots in homes of rural older adults. Social Robotics. LNCS (LNAI), vol. 9388, pp. 512–521. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25554-5_51CrossRefGoogle Scholar
  16. 16.
    PALROBOTICS: REEM-A: Robotics research (2018). https://en.wikipedia.org/wiki/REEMSpecifications
  17. 17.
    PALROBOTICS: REEM-C: Robotics research (2018). http://pal-robotics.com/en/products/reem-c/
  18. 18.
    Robotics, S.: Nao robot (2018). https://en.wikipedia.org/wiki/Nao_(robot)
  19. 19.
  20. 20.
    Sabelli, A.M., Kanda, T.: Robovie as a mascot: a qualitative study for long-term presence of robots in a shopping mall. Int. J. Soc. Rob. 8(2), 211–221 (2016).  https://doi.org/10.1007/s12369-015-0332-9CrossRefGoogle Scholar
  21. 21.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2478–2483, September 2002Google Scholar
  22. 22.
    Wikipedia: Nadine social robot (2018). https://en.wikipedia.org/wiki/Nadine_Social_Robot
  23. 23.
    Wikipedia: Sophia (robot) (2018). https://en.wikipedia.org/wiki/Sophia_(robot)
  24. 24.
    Wikipedia: Topio (2018). https://en.wikipedia.org/wiki/TOPIO
  25. 25.
    Zhang, J., Zheng, J., Magnenat Thalmann, N.: PCMD: personality-characterized mood dynamics model toward personalized virtual characters. Comput. Animation Virtual Worlds 26(3–4), 237–245 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Zheng, J., Magnenat Thalmann, N.: MCAEM: mixed-correlation analysis-based episodic memory for companion-user interactions. Vis. Comput. 34(6–8), 1129–1141 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Media InnovationNanyang Technological UniversitySingaporeSingapore
  2. 2.MIRALabUniversity of GenevaGenevaSwitzerland

Personalised recommendations