Advertisement

Bivariate BRDF Estimation Based on Compressed Sensing

  • Haru Otani
  • Takashi KomuroEmail author
  • Shoji Yamamoto
  • Norimichi Tsumura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

We propose a method of estimating a bivariate BRDF from a small number of sampled data using compressed sensing. This method aims to estimate the reflectance of various materials by using the representation space that keeps local information when restored by compressed sensing. We conducted simulated measurements using randomly sampled data and data sampled according to the camera position and orientation, and confirmed that most of the BRDF was successfully restored from 40% sampled data in the case of simulated measurement using a camera and markers.

Keywords

Reflectance estimation Bivariate BRDF Compressed sensing 

References

  1. 1.
    Bilgili, A., Öztürk, A., Kurt, M.: A general BRDF representation based on tensor decomposition. Comput. Graph. Forum 30, 2427–2439 (2011)CrossRefGoogle Scholar
  2. 2.
    Foo, S.C.: A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation. Ph.D. thesis, Citeseer (1997)Google Scholar
  3. 3.
    Garrido-Jurado, S., Muoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogn. 51 (2015).  https://doi.org/10.1016/j.patcog.2015.09.023CrossRefGoogle Scholar
  4. 4.
    Hullin, M.B., Hanika, J., Ajdin, B., Seidel, H.P., Kautz, J., Lensch, H.: Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions. ACM Trans. Graph. (TOG) 29(4), 97 (2010)CrossRefGoogle Scholar
  5. 5.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)CrossRefGoogle Scholar
  6. 6.
    Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models (2005)Google Scholar
  7. 7.
    Romeiro, F., Vasilyev, Y., Zickler, T.: Passive reflectometry. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 859–872. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88693-8_63CrossRefGoogle Scholar
  8. 8.
    Romero Ramirez, F., Muoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76 (2018).  https://doi.org/10.1016/j.imavis.2018.05.004CrossRefGoogle Scholar
  9. 9.
    Schwartz, C., Sarlette, R., Weinmann, M., Klein, R.: DOME II: a parallelized BTF acquisition system. In: Material Appearance Modeling, pp. 25–31 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Haru Otani
    • 1
  • Takashi Komuro
    • 1
    Email author
  • Shoji Yamamoto
    • 2
  • Norimichi Tsumura
    • 3
  1. 1.Saitama UniversitySakura-kuJapan
  2. 2.Tokyo Metropolitan College of Industrial TechnologyArakawa-kuJapan
  3. 3.Chiba UniversityInage-kuJapan

Personalised recommendations