Advertisement

Physical Space Performance Mapping for Lenticular Lenses in Multi-user VR Displays

  • Juan Sebastian Munoz-ArangoEmail author
  • Dirk Reiners
  • Carolina Cruz-Neira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

One of the common issues of virtual reality systems regardless if they are head mounted or projection based is that they cannot provide correct perspective views to more than one user. This limitation increases collaboration times and reduces usability of such systems. Lenticular lenses have been previously used to separate users in multi-user VR systems. On this paper we present an assessment of the area of interaction of users in a multi-user VR system that uses lenticular lenses.

Keywords

Multi-user VR Virtual Reality Lenticular lens 

References

  1. 1.
    Brar, R.S., et al.: Laser-based head-tracked 3D display research. J. Display Technol. 6(10), 531–543 (2010)CrossRefGoogle Scholar
  2. 2.
    Brar, R.S., Surman, P., Sexton, I., Hopf, K.: Multi-user glasses free 3D display using an optical array. In: 2010 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2010)Google Scholar
  3. 3.
    Kooima, R., Prudhomme, A., Schulze, J., Sandin, D., DeFanti, T.: A multi-viewer tiled autostereoscopic virtual reality display. In: proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 171–174. ACM (2010)Google Scholar
  4. 4.
    LenstarLenticular: Possible lenticular effects, December 2018. https://www.lenstarlenticular.com/lenticular-effects/. Accessed 15 Dec 2018
  5. 5.
    Lipton, L., Feldman, M.H.: New autostereoscopic display technology: the synthaGram. In: Stereoscopic Displays and Virtual Reality Systems IX, vol. 4660, pp. 229–236. Intl Society for Optics and Photonics (2002)Google Scholar
  6. 6.
    Little, G.R., Gustafson, S.C., Nikolaou, V.E.: Multiperspective autostereoscopic display. In: Cockpit Displays, vol. 2219, pp. 388–395. Intl Society for Optics and Photonics (1994)Google Scholar
  7. 7.
    Matsumoto, K., Honda, T.: Research of 3D display using anamorphic optics. In: Stereoscopic Displays and Virtual Reality Systems IV, vol. 3012, pp. 199–208. Intl Society for Optics and Photonics (1997)Google Scholar
  8. 8.
    Matusik, W., Pfister, H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 814–824. ACM (2004)Google Scholar
  9. 9.
    Munoz-Arango, J.S., Reiners, D.: Analyzing pixel spread correlation with lenticular lens efficiency on multi user VR displays. In: WSCG, p. 10. ACM (2019)Google Scholar
  10. 10.
    Munoz-Arango, J.S., Reiners, D., Cruz-Neira, C.: Maximizing lenticular lens performance for multi user VR displays. In: Laval Virtual, p. 10. ACM (2019)Google Scholar
  11. 11.
    Nguyen, D., Canny, J.: Multiview: spatially faithful group video conferencing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 799–808. ACM (2005)Google Scholar
  12. 12.
    Nguyen, D.T., Canny, J.: Multiview: improving trust in group video conferencing through spatial faithfulness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1465–1474. ACM (2007)Google Scholar
  13. 13.
    Omura, K., Shiwa, S., Miyasato, T.: Lenticular autostereoscopic display system: multiple images for multiple viewers. J. Soc. Inf. Disp. 6(4), 313–324 (1998)CrossRefGoogle Scholar
  14. 14.
    Pollock, B., Burton, M., Kelly, J.W., Gilbert, S., Winer, E.: The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments. IEEE Trans. Vis. Comput. Graph. 4, 581–588 (2012)CrossRefGoogle Scholar
  15. 15.
    Surman, P., et al.: Head tracked single and multi-user autostereoscopic displays (2006)Google Scholar
  16. 16.
    Takaki, Y.: Thin-type natural three-dimensional display with 72 directional images. In: Stereoscopic Displays and Virtual Reality Systems XII, vol. 5664, p. 56. Intl Society for Optics and Photonics (2005)Google Scholar
  17. 17.
    Takaki, Y.: Super multi-view display with 128 viewpoints and viewpoint formation. In: Stereoscopic Displays and Applications XX, vol. 7237, p. 72371T. Intl Society for Optics and Photonics (2009)Google Scholar
  18. 18.
    Takaki, Y., Nago, N.: Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18(9), 8824–8835 (2010)CrossRefGoogle Scholar
  19. 19.
    Takaki, Y., Yokoyama, O., Hamagishi, G.: Flat panel display with slanted pixel arrangement for 16-view display. In: Stereoscopic Displays and Applications XX, vol. 7237, p. 723708. Intl Society for Optics and Photonics (2009)Google Scholar
  20. 20.
    Van Berkel, C.: Image preparation for 3D LCD. In: Stereoscopic Displays and Virtual Reality VI, vol. 3639, pp. 84–92. Intl Society for Optics and Photonics (1999)Google Scholar
  21. 21.
    Van Berkel, C., Clarke, J.A.: Characterization and optimization of 3D-LCD module design. In: Stereoscopic Displays and Virtual Reality IV, vol. 3012, pp. 179–187. Intl Society for Optics and Photonics (1997)Google Scholar
  22. 22.
    Zang, S.F., Wang, Q.H., Zhao, W.X., Zhang, J., Liang, J.L.: A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen. J. Display Technol. 10(10), 882–886 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Sebastian Munoz-Arango
    • 1
    Email author
  • Dirk Reiners
    • 1
  • Carolina Cruz-Neira
    • 1
  1. 1.Emerging Analytics Center, UALittle RockUSA

Personalised recommendations