Advertisement

Towards Moving Virtual Arms Using Brain-Computer Interface

  • Jaime RiascosEmail author
  • Steeven VillaEmail author
  • Anderson Maciel
  • Luciana Nedel
  • Dante Barone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

Motor imagery Brain-Computer Interface (MI-BCI) is a paradigm widely used for controlling external devices by imagining bodily movements. This technology has inspired researchers to use it in several applications such as robotic prostheses, games, and virtual reality (VR) scenarios. We study the inclusion of an imaginary third arm as a part of the control commands for BCI. To this end, we analyze a set of open-close hand tasks (including a third arm that comes out from the chest) performed in two VR scenarios: the classical BCI Graz, with arrows as feedback; and a first-person view of a human-like avatar performing the corresponding tasks. This study purpose is to explore the influence of both time window of the trials and the frequency bands on the accuracy of the classifiers. Accordingly, we used a Filter Bank Common Spatial Patterns (FBCSP) algorithm for several time windows (100, 200, 400, 600, 800, 1000 and 2000 ms) for extracting features and evaluating the classification accuracy. The offline classification results show that a third arm can be effectively used as a control command (accuracy > 0.62%). Likewise, the human-like avatar condition (\(67\%\)) outperforms the Graz condition (\(63\%\)) significantly, suggesting that the realistic scenario can reduce the abstractness of the third arm. This study, thus, motivates the further inclusion of non-embodied motor imagery task in BCI systems.

Keywords

Brain-Computer Interface Virtual reality Rubber hand illusion 

References

  1. 1.
    Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397 (2008).  https://doi.org/10.1109/IJCNN.2008.4634130
  2. 2.
    Bashford, L., Mehring, C.: Ownership and agency of an independent supernumerary hand induced by an imitation brain-computer interface. PLoS One 11(6), 1–15 (2016).  https://doi.org/10.1371/journal.pone.0156591CrossRefGoogle Scholar
  3. 3.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2008).  https://doi.org/10.1109/MSP.2008.4408441CrossRefGoogle Scholar
  4. 4.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004).  https://doi.org/10.1016/j.jneumeth.2003.10.009CrossRefGoogle Scholar
  5. 5.
    Gert, P., Leeb, R., Faller, J., Neuper, C.: Brain-computer interface systems used for virtual reality control. In: Kim, J.J. (ed.) Virtual Reality, Chap. 7, pp. 1–19. InTech (2011)Google Scholar
  6. 6.
    He, B., Baxter, B., Edelman, B.J., Cline, C.C., Ye, W.W.: Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc. IEEE 103(6), 907–925 (2015).  https://doi.org/10.1109/JPROC.2015.2407272CrossRefGoogle Scholar
  7. 7.
    Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)CrossRefGoogle Scholar
  8. 8.
    Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Miranda, E.R., Castet, J. (eds.) Guide to Brain-Computer Music Interfacing, pp. 133–161. Springer, London (2014).  https://doi.org/10.1007/978-1-4471-6584-2_7. https://hal.inria.fr/hal-01055103CrossRefGoogle Scholar
  9. 9.
    Neuper, C., Muller, G., Kubler, A., Birbaumer, N., Pfurtscheller, G.: Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol. 114(3), 399–409 (2003).  https://doi.org/10.1016/S1388-2457(02)00387-5CrossRefGoogle Scholar
  10. 10.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005).  https://doi.org/10.1109/TPAMI.2005.159CrossRefGoogle Scholar
  11. 11.
    Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001).  https://doi.org/10.1109/5.939829CrossRefGoogle Scholar
  12. 12.
    Pfurtscheller, G.: Quantification of ERD and ERS in the Time Domain, pp. 89–105, 6th edn. Elsevier B.V., Netherlands (1999). Revised editionGoogle Scholar
  13. 13.
    Skola, F., Liarokapis, F.: Embodied vr environment facilitates motor-imagery brain-computer interface training. Comput. Graph. 75, 59–71 (2018).  https://doi.org/10.1016/j.cag.2018.05.024CrossRefGoogle Scholar
  14. 14.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002).  https://doi.org/10.1016/S1388-2457(02)00057-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of InformaticsFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations