Advertisement

Video Sequence Boundary Labeling with Temporal Coherence

  • Petr BobákEmail author
  • Ladislav Čmolík
  • Martin Čadík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

We propose a method for video sequence boundary labeling which maintains the temporal coherence. The method is based on two ideas. We limit the movement of the label boxes only to the horizontal direction, and reserve free space for the movement of the label boxes in the label layout. The proposed method is able to position label boxes in video sequence on a lower number of rows than existing methods, while at the same time, it minimizes the movement of label boxes. We conducted an extensive user experiment where the proposed method was ranked the best for panorama video sequences labeling compared to three existing methods.

Keywords

Labeling Boundary labeling Temporal coherence 

Notes

Acknowledgements

This work was supported by Research Center for Informatics No. CZ.02.1.01/0.0/0.0/16_019/0000765; by V3C – “Visual Computing Competence Center” by Technology Agency of the Czech Republic, project no. TE01020415; by the Ministry of Education, Youth and Sports of the Czech Republic within the activity MOBILITY (MSMT-539/2017-1) ID: 7AMB17AT021, and from the “National Programme of Sustainability (NPU II) project IT4Innovations excellence in science - LQ1602”; and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center - LM2015070”. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042).

References

  1. 1.
    Agresti, A., Coull, B.A.: Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am. Stat. 52(2), 119–126 (1998)MathSciNetGoogle Scholar
  2. 2.
    Baboud, L., Čadík, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain alignment for the annotation of mountain pictures. In: CVPR 2011, pp. 41–48. IEEE Computer Society, Washington, DC (2011)Google Scholar
  3. 3.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Multi-stack boundary labeling problems. WSEAS Trans. Comput. 5(11), 2602–2607 (2006)zbMATHGoogle Scholar
  4. 4.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed Integer Nonlinear Programming. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  5. 5.
    Benkert, M., Haverkort, H., Kroll, M., Nöllenburg, M.: Algorithms for multi-criteria one-sided boundary labeling. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 243–254. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77537-9_25CrossRefGoogle Scholar
  6. 6.
    Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  7. 7.
    Čmolík, L., Bittner, J.: Layout-aware optimization for interactive labeling of 3D models. Comput. Graph. 34(4), 378–387 (2010)CrossRefGoogle Scholar
  8. 8.
    David, H.: The Method of Paired Comparisons. Griffin’s Statistical Monographs & Courses, C. Griffin (1988)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)zbMATHGoogle Scholar
  10. 10.
    Gemsa, A., Haunertand, J.H., Nöllenburg, M.: Multi-row boundary-labeling algorithms for panorama images. ACM TSAS 1(1), 289–298 (2014)Google Scholar
  11. 11.
    Götzelmann, T., Hartmann, K., Strothotte, T.: Annotation of animated 3D objects. In: SimVis. SCS, pp. 209–222. Publishing House (2007)Google Scholar
  12. 12.
    Gurobi Optimization, LLC: Advanced Gurobi Algorithms (2016). http://www.gurobi.com/pdfs/user-events/2016-frankfurt/Die-Algorithmen.pdf
  13. 13.
    Kouřil, D., et al.: Labels on levels: labeling of multi-scale multi-instance and crowded 3D biological environments. IEEE TVCG 25(1), 977–986 (2019)Google Scholar
  14. 14.
    Lewis, J.R., Sauro, J.: When 100% really isn’t 100%: improving the accuracy of small-sample estimates of completion rates. J. Usability Stud. 1(3), 136–150 (2006)Google Scholar
  15. 15.
    Maass, S., Döllner, J.: Efficient view management for dynamic annotation placement in virtual landscapes. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 1–12. Springer, Heidelberg (2006).  https://doi.org/10.1007/11795018_1CrossRefGoogle Scholar
  16. 16.
    MacKenzie, I.S.: Human-Computer Interaction: An Empirical Research Perspective. Newnes, Oxford (2012)Google Scholar
  17. 17.
    Perez-Ortiz, M., Mantiuk, R.K.: A practical guide and software for analysing pairwise comparison experiments (2017). http://arxiv.org/abs/1712.03686
  18. 18.
    Sauro, J., Lewis, J.R.: Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, no. 24, pp. 2100–2103. SAGE Publications, Thousand Oaks (2005)CrossRefGoogle Scholar
  19. 19.
    Sauro, J., Lewis, J.R.: Quantifying the User Experience: Practical Statistics for User Research. Elsevier, Amsterdam (2012)Google Scholar
  20. 20.
    Tatzgern, M., Kalkofen, D., Grasset, R., Schmalstieg, D.: Hedgehog labeling: view management techniques for external labels in 3D space. In: 2014 IEEE Virtual Reality, pp. 27–32 (2014)Google Scholar
  21. 21.
    Tsukida, K., Gupta, M.R.: How to analyze paired comparison data. UWEE Technical report 206 (2011)Google Scholar
  22. 22.
    Vaaraniemi, M., Treib, M., Westermann, R.: Temporally coherent real-time labeling of dynamic scenes. In: Proceedings of the 3rd International Conference on Computing for Geospatial Research and Applications, COM.Geo 2012, pp. 17:1–17:10. ACM, New York (2012)Google Scholar
  23. 23.
    Ye, Y., Tse, E.: An extension of Karmarkar’s projective algorithm for convex quadratic programming. Math. Program. 44(1), 157–179 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzechia
  2. 2.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzechia

Personalised recommendations