Capturing Piecewise SVBRDFs with Content Aware Lighting

  • Xiao LiEmail author
  • Peiran Ren
  • Yue Dong
  • Gang Hua
  • Xin Tong
  • Baining Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)


We present a method for capturing piecewise SVBRDFs over flat surfaces that consist of piecewise homogeneous materials with arbitrary geometric details. To achieve fast and simple capture, our method first evaluates the piecewise material distribution over the surface from an image taken with uniform lighting and then find an suitable 2D light pattern according to the material’s spatial distribution, which combines both step edge and gradient lighting patterns. After that, we capture another image of the surface lit by the optimized light pattern and reconstruct the SVBRDF and normal details from two captured images. The capturing only takes two photographs and the light pattern optimization is executed in real time, which enables us to design a simple device setup for on-site capturing. We validate our approach and demonstrate the efficiency of our method on a wide range of synthetic and real materials.


Appearance capture Adaptive capture SVBRDF 


  1. 1.
    Aittala, M., Weyrich, T., Lehtinen, J.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4), 110 (2015)CrossRefGoogle Scholar
  2. 2.
    Chen, G., Dong, Y., Peers, P., Zhang, J., Tong, X.: Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources. ACM Trans. Graph. 33(4), 117 (2014)Google Scholar
  3. 3.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. PAMI 17(8), 790–799 (1995)CrossRefGoogle Scholar
  4. 4.
    Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1(1), 7–24 (1982)CrossRefGoogle Scholar
  5. 5.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Dong, Y., et al.: Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29(4), 98 (2010)Google Scholar
  7. 7.
    Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. PAMI 32(6), 1060–1071 (2009)CrossRefGoogle Scholar
  8. 8.
    Kang, K., Chen, Z., Wang, J., Zhou, K., Wu, H.: Efficient reflectance capture using an autoencoder. ACM Trans. Graph 37, 127 (2018)CrossRefGoogle Scholar
  9. 9.
    Lawrence, J., et al.: Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25(3), 735–745 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 234–257 (2003)CrossRefGoogle Scholar
  11. 11.
    Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: EGSR 2007, pp. 183–194 (2007)Google Scholar
  12. 12.
    Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. ACM Trans. Graph. 30(4), 45:1–45:10 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, C.P., Snavely, N., Marschner, S.: Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Trans. Graph. 30(6) (2011)Google Scholar
  14. 14.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV 1999, vol. 1, pp. 666–673. IEEE (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiao Li
    • 1
    • 3
    Email author
  • Peiran Ren
    • 2
  • Yue Dong
    • 3
  • Gang Hua
    • 4
  • Xin Tong
    • 3
  • Baining Guo
    • 3
  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Alibaba Inc.HangzhouChina
  3. 3.Microsoft Research AsiaBeijingChina
  4. 4.Wormpex AI ResearchBeijingChina

Personalised recommendations