Advertisement

New Three-Chemical Polynomial Reaction-Diffusion Equations

  • Do-yeon Han
  • Byungmoon Kim
  • Oh-young SongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

Reaction-diffusion (RD) generates time-varying patterns or noises, used to create beautiful patterned or noisy variations in colors, bumps, flow details, or other parameters. RD can be relatively easily solved on various domains: image, curved surface, and volumetric domains, making their applications popular. Being widely available, most of the patterns from known RD have been well explored. In this paper, we move on this field, by providing a large number of new reaction equations. Among the vast space of new equations, we focus on three-chemical polynomial reactions as the three chemicals can be easily mapped to any colors. We propose a set of new equations that generate new time-varying patterns.

Keywords

Reaction-diffusion Pattern generation PDE Texture synthesis Time-varying noise 

References

  1. 1.
    Acton, S.T., Mukherjee, D.P., Havlicek, J.P., Bovik, A.C.: Oriented texture completion by AM-FM reaction-diffusion. IEEE Trans. Image Process. 10(6), 885–896 (2001)CrossRefGoogle Scholar
  2. 2.
    Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D: Nonlinear Phenom. 49(1–2), 61–70 (1991)CrossRefGoogle Scholar
  3. 3.
    Belousov, B.P.: Radiates. Med. 145 (1959)Google Scholar
  4. 4.
    Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)CrossRefGoogle Scholar
  5. 5.
    Cottet, G.H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comput. 61, 659–673 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    FitzHugh, R.: Mathematical Models of Excitation and Propagation in Nerve. Publisher Unknown (1966)Google Scholar
  7. 7.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Biol. Cyberne. 12(1), 30–39 (1972)zbMATHGoogle Scholar
  8. 8.
    Tim, H., Munafo, R., Trevorrow, A., Rokicki, T., Wills, D.: Ready, a cross-platform implementation of various reaction-diffusion systems (2012). https://github.com/GollyGang/ready
  9. 9.
    Kindlmann, G., Weinstein, D., Hart, D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans. Visual. Comput. Graph. 6(2), 124–138 (2000)CrossRefGoogle Scholar
  10. 10.
    Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lo, K.Y., Li, H., Fu, C.W., Wong, T.T.: Interactive reaction-diffusion on surface tiles. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 65–74. IEEE (2007)Google Scholar
  12. 12.
    Malevanets, A., Kapral, R.: Microscopic model for Fitzhugh-Nagumo dynamics. Phys. Rev. E 55(5), 5657 (1997)CrossRefGoogle Scholar
  13. 13.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982)Google Scholar
  14. 14.
    Murray, J.: Mathematical Biology II: Spatial Models and Biochemical Applications, vol. II. Springer, New York (2003).  https://doi.org/10.1007/b98869CrossRefGoogle Scholar
  15. 15.
    Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)CrossRefGoogle Scholar
  16. 16.
    Pena, B., Perez-Garcia, C.: Stability of Turing patterns in the Brusselator model. Phys. Rev.E 64(5), 056213 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sanderson, A.R., Johnson, C.R., Kirby, R.M.: Display of vector fields using a reaction-diffusion model. In: Proceedings of the Conference on Visualization 2004, pp. 115–122. IEEE Computer Society (2004)Google Scholar
  18. 18.
    Sims, K.: Interactive evolution of dynamical systems. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 171–178 (1992)Google Scholar
  19. 19.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. ACM SIGGRAPH Comput. Graph. 25, 289–298 (1991)CrossRefGoogle Scholar
  21. 21.
    Walter, M., Fournier, A., Reimers, M.: Clonal mosaic model for the synthesis of mammalian coat patterns. Graph. Interface 98, 82–91 (1998)Google Scholar
  22. 22.
    Witkin, A., Kass, M.: Reaction-diffusion textures. ACM SIGGRAPH Comput. Graph. 25(4), 299–308 (1991)CrossRefGoogle Scholar
  23. 23.
    Yang, L., Epstein, I.R.: Oscillatory turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90(17), 178303 (2003)CrossRefGoogle Scholar
  24. 24.
    Zhabotinsky, A.M.: Dokl. Akad. Nauk SSSR 157. 392 (1964)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sejong UniversitySeoulSouth Korea
  2. 2.Adobe ResearchSan JoseUSA

Personalised recommendations