Fast Simulation of Crowd Collision Avoidance

  • John CharltonEmail author
  • Luis Rene Montana Gonzalez
  • Steve Maddock
  • Paul Richmond
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)


Real-time large-scale crowd simulations with realistic behavior, are important for many application areas. On CPUs, the ORCA pedestrian steering model is often used for agent-based pedestrian simulations. This paper introduces a technique for running the ORCA pedestrian steering model on the GPU. Performance improvements of up to 30 times greater than a multi-core CPU model are demonstrated. This improvement is achieved through a specialized linear program solver on the GPU and spatial partitioning of information sharing. This allows over 100,000 people to be simulated in real time (60 frames per second).


Pedestrian simulation Real-time rendering GPU-computing 



This research was supported by the Transport Systems Catapult and the National Council of Science and Technology in Mexico (Consejo Nacional de Ciencia y Tecnología, CONACYT).


  1. 1.
    Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 3, pp. 1207–1212, October 2001.
  2. 2.
    Barut, O., Haciomeroglu, M., Sezer, E.A.: Combining GPU-generated linear trajectory segments to create collision-free paths for real-time ambient crowds. Graph. Models 99, 31–45 (2018). Scholar
  3. 3.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935, May 2008.
  4. 4.
    van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 3–19. Springer, Heidelberg (2011). Scholar
  5. 5.
    Bleiweiss, A.: Multi agent navigation on the GPU. White paper, GDC, vol. 9 (2009)Google Scholar
  6. 6.
    Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation—request PDF. Transp. Res. Rec. J. Transp. Res. Board 1644, 29–36 (1998). Scholar
  7. 7.
    Blue, V., Adler, J.: Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec. J. Transp. Res. Board 1678, 135–141 (1999). Scholar
  8. 8.
    Charlton, J., Maddock, S., Richmond, P.: Two-dimensional batch linear programming on the GPU. J. Parallel Distrib. Comput. 126, 152–160 (2019). Scholar
  9. 9.
    Fickett, M., Zarko, L.: GPU Continuum Crowds. CIS Final Project Final report, University of Pennsylvania (2007)Google Scholar
  10. 10.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Rob. Res. 17(7), 760–772 (1998). Scholar
  11. 11.
    Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1610–1616. IEEE, Rome, April 2007.
  12. 12.
    Guy, S.J., et al.: ClearPath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2009, pp. 177–187. ACM, New York (2009).
  13. 13.
    He, L., Pan, J., Narang, S., Wang, W., Manocha, D.: Dynamic Group Behaviors for Interactive Crowd Simulation. arXiv:1602.03623 [cs], February 2016
  14. 14.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). Scholar
  15. 15.
    Karmakharm, T., Richmond, P.: Agent-based large scale simulation of pedestrians with adaptive realistic navigation vector fields. EG UK Theor. Pract. Comput. Graph. 10, 67–74 (2010)Google Scholar
  16. 16.
    Kluge, B., Prassler, E.: Recursive probabilistic velocity obstacles for reflective navigation. In: Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S. (eds.) Field and Service Robotics: Recent Advances in Research and Applications. Springer Tracts in Advanced Robotics, vol. 24, pp. 71–79. Springer, Berlin (2006). Scholar
  17. 17.
    Li, B., Mukundan, R.: A Comparative Analysis of Spatial Partitioning Methods for Large-Scale, Real-Time Crowd Simulation. Václav Skala - UNION Agency (2013)Google Scholar
  18. 18.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia 2009, pp. 122:1–122:8. ACM, New York (2009).
  19. 19.
    Nvidia: Tuning CUDA Applications for Maxwell (2018).
  20. 20.
    Pettré, J., Kallmann, M., Lin, M.C.: Motion planning and autonomy for virtual humans. In: ACM SIGGRAPH 2008 Classes, SIGGRAPH 2008, pp. 42:1–42:31. ACM, New York (2008).
  21. 21.
    Pettré, J., Pelechano, N.: Introduction to crowd simulation. In: Bousseau, A., Gutierrez, D. (eds.) EG 2017 - Tutorials. The Eurographics Association (2017).
  22. 22.
    Richmond, P.: Flame GPU Technical Report and User Guide. Department of Computer Science Technical report CS-11-03, University of Sheffield (2011)Google Scholar
  23. 23.
    Richmond, P., Romano, D.M.: A high performance framework for agent based pedestrian dynamics on GPU hardware. In: Proceedings of EUROSIS ESM 2008 (2008)Google Scholar
  24. 24.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51(3), 123–143 (1999). Scholar
  25. 25.
    Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom. 6(3), 423–434 (1991). Scholar
  26. 26.
    Snape, J.: Optimal Reciprocal Collision Avoidance (C++). Contribute to snape/RVO2 development by creating an account on GitHub, March 2019Google Scholar
  27. 27.
    Thalmann, D.: Populating virtual environments with crowds. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, VRCIA 2006, p. 11. ACM, New York (2006).
  28. 28.
    Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a high-performance graph processing library on the GPU. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, p. 11. ACM (2016)Google Scholar
  29. 29.
    Xu, M.L., Jiang, H., Jin, X., Deng, Z.: Crowd simulation and its applications: recent advances. J. Comput. Sci. Technol. 29, 799–811 (2014). Scholar
  30. 30.
    Yang, Z., Pan, J., Wang, W., Manocha, D.: Proxemic group behaviors using reciprocal multi-agent navigation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 292–297 (2016).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK

Personalised recommendations