Advertisement

BioClouds: A Multi-level Model to Simulate and Visualize Large Crowds

  • Andre Da Silva Antonitsch
  • Diogo Hartmann Muller Schaffer
  • Gabriel Wetzel Rockenbach
  • Paulo Knob
  • Soraia Raupp MusseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)

Abstract

This paper presents a multi-level approach to simulate large crowds [18] called BioClouds. The goal of this work is to model larger groups of agents by simulating aggregation of agents as singular units. This approach combines microscopic and macroscopic simulation strategies, where each group of agents (called cloud) keeps the global characteristics of the crowd unity without simulating individuals. In addition to macroscopic strategy, BioClouds allows to alter from global to local behavior (individuals), providing more accurate simulation in terms of agents velocities and densities. We also propose a new model of visualization focused on larger simulated crowds but keeping the possibility of “zooming” individuals and see their behaviors. Results indicate that BioClouds presents coherent behaviors when compared to what is expected in global and individual levels. In addition, BioClouds provides an important speed up in processing time when compared to microcospic crowd simulators present in literature, being able to achieve until one million agents, organized in 2000 clouds and simulated at 86.85 ms per frame.

Keywords

Crowd simulation BioCrowds Collision avoidance Macroscopic simulation Microscopic simulation Crowd visualization 

References

  1. 1.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987).  https://doi.org/10.1137/0216006MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Best, A., Narang, S., Curtis, S., Manocha, D.: Densesense: interactive crowd simulation using density-dependent filters. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 97–102. Eurographics Association (2014)Google Scholar
  3. 3.
    Helbing, D.: A fluid dynamic model for the movement of pedestrians, vol. 6, June 1998Google Scholar
  4. 4.
    Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B: Methodol. 36(6), 507–535 (2002)CrossRefGoogle Scholar
  5. 5.
    Knob, P., Balotin, M., Musse, S.R.: Simulating crowds with ocean personality traits. In: Proceedings of the 18th International Conference on Intelligent Virtual Agents, pp. 233–238. ACM (2018)Google Scholar
  6. 6.
    de Lima Bicho, A., Rodrigues, R.A., Musse, S.R., Jung, C.R., Paravisi, M., Magalhes, L.P.: Simulating crowds based on a space colonization algorithm. Comput. Graph. 36(2), 70–79 (2012)CrossRefGoogle Scholar
  7. 7.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM Transactions on Graphics (TOG), vol. 28, p. 122. ACM (2009)CrossRefGoogle Scholar
  8. 8.
    Narang, S., Best, A., Manocha, D.: Interactive simulation of local interactions in dense crowds using elliptical agents. J. Stat. Mech.: Theory Exp. 2017(3), 033403 (2017)CrossRefGoogle Scholar
  9. 9.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, pp. 99–108, Aire-la-Ville, Switzerland. Eurographics Association (2007). http://dl.acm.org/citation.cfm?id=1272690.1272705
  10. 10.
    Pelechano, N., Allbeck, J.M., Kapadia, M., Badler, N.I.: Simulating Heterogeneous Crowds with Interactive Behaviors. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  11. 11.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987).  https://doi.org/10.1145/37402.37406CrossRefGoogle Scholar
  12. 12.
    Sewall, J., Wilkie, D., Lin, M.C.: Interactive hybrid simulation of large-scale traffic. ACM Trans. Graph. (TOG) 30(6), 135 (2011)CrossRefGoogle Scholar
  13. 13.
    Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4450-2CrossRefGoogle Scholar
  14. 14.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. (TOG) 25, 1160–1168 (2006)CrossRefGoogle Scholar
  15. 15.
    Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 3–19. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19457-3_1CrossRefGoogle Scholar
  16. 16.
    Xiong, M., Lees, M., Cai, W., Zhou, S., Low, M.Y.H.: Hybrid modelling of crowd simulation. Procedia Comput. Sci. 1(1), 57–65 (2010)CrossRefGoogle Scholar
  17. 17.
    Xiong, M., Tang, S., Zhao, D.: A hybrid model for simulating crowd evacuation. New Gener. Comput. 31(3), 211–235 (2013)CrossRefGoogle Scholar
  18. 18.
    Xu, M.L., Jiang, H., Jin, X.G., Deng, Z.: Crowd simulation and its applications: recent advances. J. Comput. Sci. Technol. 29(5), 799–811 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of TechnologyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations