Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

  • Yao LyuEmail author
  • Jinglu Zhang
  • Jian Chang
  • Shihui Guo
  • Jian Jun Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)


We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability.


Material Point Method Peridynamics Elastoplastic modeling 


  1. 1.
    Böttcher, G.: Haptic Interaction with Deformable Objects: Modelling VR Systems for Textiles. Springer, London (2011). Scholar
  2. 2.
    Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007)Google Scholar
  3. 3.
    Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018)Google Scholar
  4. 4.
    Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017)Google Scholar
  5. 5.
    Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009)Google Scholar
  6. 6.
    He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Vis. Comput. Graph. 24(9), 2589–2599 (2018)CrossRefGoogle Scholar
  7. 7.
    Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Num. Methods Eng. 109(7), 1013–1044 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017)Google Scholar
  9. 9.
    Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)zbMATHGoogle Scholar
  10. 10.
    Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016)Google Scholar
  11. 11.
    Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011)CrossRefGoogle Scholar
  12. 12.
    Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014)Google Scholar
  13. 13.
    Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (TOG) 21, 291–294 (2002)Google Scholar
  15. 15.
    Salsedo, F., et al.: Architectural design of the HAPTEX system. In: submitted to the Proceedings of this Conference (2005)Google Scholar
  16. 16.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014)Google Scholar
  18. 18.
    Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM, United States (2014)Google Scholar
  20. 20.
    Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012)Google Scholar
  21. 21.
    Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)CrossRefGoogle Scholar
  22. 22.
    Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials, 2 Jul 2015. US Patent App. 14/323,798Google Scholar
  23. 23.
    Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)CrossRefGoogle Scholar
  25. 25.
    Tampubolon, A.P., Gast, T., Klár, G., Fu, C., Teran, J., Jiang, C., Museth, K.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)CrossRefGoogle Scholar
  26. 26.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM SIGGRAPH Computer Graphics, vol. 22, pp. 269–278. ACM (1988)Google Scholar
  27. 27.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)CrossRefGoogle Scholar
  28. 28.
    Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018)Google Scholar
  29. 29.
    Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-Newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yao Lyu
    • 1
    Email author
  • Jinglu Zhang
    • 1
  • Jian Chang
    • 1
  • Shihui Guo
    • 2
  • Jian Jun Zhang
    • 1
  1. 1.National Centre for Computer AnimationBournemouth UniversityPooleUK
  2. 2.School of SoftwareXiamen UniversityXiamenChina

Personalised recommendations