The Socio-Ecological Systems Approach to Research the Integrated Groundwater Management in an Agricultural Dryland in Mexico

  • M. Villada-CanelaEmail author
  • R. Camacho-López
  • D. M. Muñoz-Pizza
Part of the Springer Climate book series (SPCL)


Strengthening integrated and sustainable water management is one of the most important objectives of 2030 Sustainable Development Agenda and Mexico’s water policy, especially in drylands where the groundwater is the primary source of water. However, 18% of the total aquifers in the country (653) are overexploited, 5% with presence of saline soils and brackish water and 3% with marine intrusion. In this regard, there are still multiple challenges in facing dryland socio-ecological systems (DSES): land degradation, desertification, climatic variations, population growth, water supply and demand, economic activities and land-use changes, cultural perceptions, water policies and governance and management practices that threaten the availability and quality of groundwater. These aspects affect land livelihood systems and the sustainability of human communities. Based on this, we explore a way to research the integrated groundwater management in Maneadero Valley, an agricultural DSES in Baja California, Mexico. We conducted 52 surveys on farmers with a concession for groundwater supply to gain clear understanding of the current water management and farmers’ participation. We found a need for real involvement from farmers as stakeholders, better knowledge exchange mechanisms and possibilities to integrate local knowledge in groundwater decision-making. Finally, we make recommendations to improve the groundwater management in the agricultural DSES of Maneadero Valley.


Maneadero Valley Public participation Coupled human–water system 



We thank the support from CONACYT BMBF, UNAM-UABC 155 Evaluation of the bio-economic risks due to aquifer over-exploitation in arid and coastal regions, urban and agriculture lands.


  1. Bautista S, Llovet J, Ocampo Melgar A, Vilagrosa A, Mayor ÁG, Murias C, Vallejo VR, Orr BJ (2017) Integrating knowledge exchange and the assessment of dryland management alternatives – A learning-centred participatory approach. J Environ Manage 195(Part I):35–45CrossRefGoogle Scholar
  2. Berkes F, Folke C (1998) Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, New YorkGoogle Scholar
  3. CONAGUA (2018) Estadísticas del agua en Mexico. Secretaría de Medio Ambiente y Recursos Naturales, Comisión Nacional del Agua, MexicoGoogle Scholar
  4. De Vente J, Reed MS, Stringer LS, Valente S, Newig J (2016) How does the context and design of participatory decision making processes affect their outcomes? Evidence from sustainable land management in global drylands. Ecol Soc 21(2):24CrossRefGoogle Scholar
  5. DOF (1965) DECRETO por el que se establece veda para el alumbramiento de aguas del subsuelo en el Estado de Baja California, MexicoGoogle Scholar
  6. DOF (2015) ACUERDO por el que se actualiza la disponibilidad media anual de agua subterránea de los 653 acuíferos de los Estados Unidos Mexicanos, mismos que forman parte de las regiones hidrológico-administrativas que se indican, MexicoGoogle Scholar
  7. DOF (2018) ACUERDO por el que se actualiza la disponibilidad media anual de agua subterránea de los 653 acuíferos de los Estados Unidos Mexicanos, mismos que forman parte de las Regiones Hidrológico-Administrativas que se indican, MexicoGoogle Scholar
  8. Foster S, Ait-Kadi M (2012) Integrated Water Resources Management (IWRM): how does groundwater fit in? Hydrogeol J 20(3):415–418CrossRefGoogle Scholar
  9. Garduño E, Navarro A, Ovalle P, Mata C (2011) Caracterización socioeconómica y cultural de las mujeres indígenas migrantes en los valles de Maneadero y San Quintín, Baja California, Mexico. Boletín de Antropología 25:57–83Google Scholar
  10. Gilabert-Alarcón C, Daessléa LW, Salgado-Méndeza SO, Pérez-Flores MA, Knöller K, Kretzschmar TG, Stumpp C (2018a) Effects of reclaimed water discharge in the Maneadero coastal aquifer, Baja California, Mexico. Appl Geochem 92:121–139CrossRefGoogle Scholar
  11. Gilabert-Alarcón C, Daesslé LW, Mendoza-Espinosa LG, Villada-Canela M (2018b) Regulatory challenges for the use of reclaimed water in Mexico: a case study in Baja California. Water 10:1432–1454CrossRefGoogle Scholar
  12. GWP (2000) Integrated water resources management. Tack background papers no. 4. Global Water Partnership, Stockholm, SwedenGoogle Scholar
  13. Herrera-Franco G, Alvarado-Macancela N, Gavín-Quinchuela T, Carrión-Mero P (2018) Participatory socio-ecological system: Manglaralto-Santa Elena, Ecuador. Geol Ecol Landsc 2(4):303–310CrossRefGoogle Scholar
  14. Holzer J, Carmon N, Orenstein D (2018) A methodology for evaluating transdisciplinary research on coupled socio-ecological systems. Ecol Indic 85:808–819CrossRefGoogle Scholar
  15. Huber-Sannwald E, Maestre F, Herrick J, Reynolds J (2006) Ecohydrological feedbacks and linkages associated with land degradation: a case study from Mexico. Hydrol Process 20:3395–3411CrossRefGoogle Scholar
  16. Huber-Sannwald E, Ribeiro Palacios M, Arredondo JT, Braasch M, Martínez Peña M, García de Alba J, Monzalvo K (2012) Navigating challenges and opportunities of land degradation and sustainable livelihood development. Philos Trans R Soc B 367:3158–3177CrossRefGoogle Scholar
  17. Jakeman A, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (2016) Integrated groundwater management: an overview of concepts. In: Integrated groundwater management: concepts, approaches and challenges. Springer, Cham, pp 3–20CrossRefGoogle Scholar
  18. King C, Salem B (2012) A socio-ecological investigation of options to manage groundwater degradation in the Western Desert, Egypt. Ambio 41(5):490–503CrossRefGoogle Scholar
  19. Lopez-Porras G, Stringer L, Quinn C (2018) Unravelling stakeholder perceptions to enable adaptive water governance in dryland systems. Water Resour Manag 32:3285–3301CrossRefGoogle Scholar
  20. McGinnis M, Ostrom E (2014) Social-ecological system framework: initial changes and continuing challenges. Ecol Soc 19(2):30CrossRefGoogle Scholar
  21. Medellin-Azuara J, Mendoza-Espinosa L, Pells C, Lund J (2013) Pre-feasibility assessment of a water fund for the Ensenada region: infrastructure and stakeholder analyses. The Nature Conservancy. Center for Watershed Sciences, UC Davis, Davis, CAGoogle Scholar
  22. Mendoza-Espinosa L, Daesslé L (2018) Consolidating the use of reclaimed water for irrigation and infiltration in a semi-arid agricultural valley in Mexico: water management experiences and results. J Water Sanit Hyg Dev 8:679–687CrossRefGoogle Scholar
  23. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  24. Onduru DD, Du Preez C (2008) Farmers’ knowledge and perceptions in assessing tropical dryland agricultural sustainability: experiences from Mbeere District, Eastern Kenya. Int J Sust Dev World 52(2):145–152CrossRefGoogle Scholar
  25. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 24:419–422CrossRefGoogle Scholar
  26. Ouessar M, Gabriels D, Tsunekawa A, Evett S et al (2017) Water and land security in drylands: response to climate change. Springer, ChamCrossRefGoogle Scholar
  27. Rica M, Petit O, López-Gunn E (2018) Understanding groundwater governance through a social ecological system framework – relevance and limits. In: Advances in groundwater governance. CRC Press, Leiden, pp 55–72Google Scholar
  28. SEDAGRO (2015) Panorama General de Maneadero, Baja California, Baja California. Secretaría de Desarrollo Agropecuario, MexicoGoogle Scholar
  29. Sivapalan M, Hubert H, Blöschl G (2011) Socio-hydrology: a new science of people and water. Hydrol Process 26:1270–1276CrossRefGoogle Scholar
  30. Thomas R (2008) Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agric Ecosyst Environ 126(1-2):36–45CrossRefGoogle Scholar
  31. UN (2015) Transforming our world: the 2030 agenda for sustainable development, A/RES/70/L.1. Resolution adopted by the General Assembly. United Nations, New YorkGoogle Scholar
  32. UNCCD (2009) UNCCD 1st scientific conference: synthesis and recommendations. ICCD/COP(9)/CST/INF.3. UNCCD, Buenos AiresGoogle Scholar
  33. Virapongse A et al (2016) A social-ecological systems approach for environmental management. J Environ Manage 178:83–91CrossRefGoogle Scholar
  34. Whitfield S, Reed M (2012) Participatory environmental assessment in drylands: introducing a new approach. J Arid Environ 77:1–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Villada-Canela
    • 1
    Email author
  • R. Camacho-López
    • 2
  • D. M. Muñoz-Pizza
    • 3
  1. 1.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja California UABCEnsenadaMéxico
  2. 2.Programa de Maestría en Manejo de Ecosistemas de Zonas ÁridasUniversidad Autónoma de Baja California UABCEnsenadaMexico
  3. 3.Programa de Doctorado en Medio Ambiente y DesarrolloUniversidad Autónoma de Baja CaliforniaEnsenada UABCMéxico

Personalised recommendations