Advertisement

The Process of Environmentally Safe Biochemical Recycling of Phosphogypsum

  • Leonid Plyatsuk
  • Magdalena BalintovaEmail author
  • Yelizaveta Chernysh
  • Iryna Ablieieva
  • Oleksiy Ablieiev
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper focuses on the determining of biochemical treatment feasibility of phosphogypsum with the extraction of useful components, particularly rare earth metals. The possibility of phosphogypsum use as a mineral substrate by various groups of microorganisms in environmental protection technologies allows the application of bioleaching. The results of research show that biochemical leaching is carried out by aerobic bacteria and it arches capable of oxidizing sulfide minerals. The representatives of the genera Acidithiobacillus, Leptospirillum, Sulfobacillus, Sulfolobus, Acidianus, Metallosphaera, Ferroplasma are leading in these processes. Biochemical formalization of the kinetics process and study of the data bank of current developments dealing with using the waste treatment processes have been carried out. The main ecological and biochemical researches, and various mechanisms of microbiological investigation, biochemical modelling have been studied for assessment of biomass productivity of phosphogypsum. Technological scheme of biological leaching of rare-earth metals from PG dumps has been developed. The optimal parameters have been determined under pH = 1.5–2.5 and T = 278–308 K and the efficiency of bioleaching has been estimated.

Keywords

Environmental protection Biochemical process Phosphogypsum Rare earth elements 

Notes

Acknowledgements

This work has been supported by the Slovak Grant Agency for Science (Grant No. 1/0419/19).

References

  1. 1.
    Recovery of rare earth elements from phosphogypsum (REE–PG) Homepage, https://www.aka.fi/globalassets/32akatemiaohjelmat/misu/hankekuvaukset/misu_sainio_ree-pg.pdf. Last Accessed 2018/11/12
  2. 2.
    Lambert, A., Tam, J., Azimi, G.: Microwave treatment for extraction of rare earth elements from phosphogypsum. In: Kim, H., Alam, S., Neelameggham, N., Oosterhof, H., Ou-chi, T., Guan, X. (eds.) Rare Metal Technology 2017, MMMS, pp. 47–53. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51085-9_5CrossRefGoogle Scholar
  3. 3.
    Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Pontikes, Y.: Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J. Clean. Prod. 99, 17–38 (2015)CrossRefGoogle Scholar
  4. 4.
    Soltani, F., Abdollahy, M., Javad Koleini, S.M., Moradkhani, D.: Selection of an appropriate leaching method for light REEs from Esfordi flotation concentrate based on mineral characterization. J. South. Afr. Inst. Min. Metall. 117(5), 443–450 (2017). https://dx.doi.org/10.17159/2411-9717/2017/v117n5a6CrossRefGoogle Scholar
  5. 5.
    Al-Thyabat, S., Zhang, P.: REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum. Miner. Process. Extr. Metall. Rev. 124(3), 143–150 (2015)CrossRefGoogle Scholar
  6. 6.
    Haschkea, M., Ahmadianb, J., Zeidlera, L., Hubrig, T.: In-situ recovery of critical technology. Elem. Procedia Eng. 138, 248–257 (2016)CrossRefGoogle Scholar
  7. 7.
    Central Asian Countries Initiative for Land Management Homepage, http://www.cacilm.org/en/technologies/section/phosphogypsum. Last Accessed 2018/11/12
  8. 8.
    Hammas-Nasria, I., Horchani-Naifera, K., Férida, M., Barcab, D.: Rare earths concentration from phosphogypsum waste by two-step leaching method. Int. J. Miner. Process. 149, 78–83 (2016)CrossRefGoogle Scholar
  9. 9.
    Mashkovtsev, M., Botalov, M., Smyshlyaev, D., Pajarre, R., Kangas, P., Rychkov, V., Koukkari, P.: Pilot-scale recovery of rare earths and scandium from phosphogypsum and uranium leachates. In: MEC2016, E3S Web of Conferences, vol. 8, 01026 (2016)CrossRefGoogle Scholar
  10. 10.
    Rychkov, V.N., Kirillov, E.V., Kirillov, S.V., Semenishchev, V.S., Bunkov, G.M., Botalov, M.S., Smyshlyaev, D.V., Malyshev, A.S.: Recovery of rare earth elements from phosphogypsum. J. Clean. Prod. 196, 674–681 (2018)CrossRefGoogle Scholar
  11. 11.
    Grabas, K., Pawełczyk, A., Stręk, W., et al.: Study on the properties of waste apatite phosphogypsum as a raw material of prospective applications. Waste Biomass Valor (2018).  https://doi.org/10.1007/s12649-018-0316-8
  12. 12.
    Walawalkara, M., Nicholb, C.K., Azimiac, G.: Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy 166, 195–204 (2016).  https://doi.org/10.1016/j.hydromet.2016.06.008CrossRefGoogle Scholar
  13. 13.
    Ismail, Z.H., Abu Elgoud, E.M., Abdel Hai, F., Ali, I.O., Gasser, M.S., Aly, H.F.: Leaching of some lanthanides from phosphogypsum fertilizers by mineral acids. Arab J. Nucl. Sci. Appl. 48(2), 37–50 (2015)Google Scholar
  14. 14.
    Lutskiy, D.S., Litvinova, T.E., Ignatovich, A.S., Fialkovskiy, I.: Complex processing of phosphogypsum—a way of recycling dumps with reception of commodity production of wide application. J. Ecol. Eng. 19(2), 221–225 (2018)CrossRefGoogle Scholar
  15. 15.
    Hussien, S., Patra, P., Somasundaran, P., et al.: Assessment of ‘bacterial (acidic)-leaching’ of rare earth elements from a phosphate ore. Adv. Environ Stud. 2(2), 91–97 (2018)Google Scholar
  16. 16.
    Zhuang, W.Q., Fitts, J.P., Ajo-Franklin, C.M., Maes, S., Alvarez-Cohen, L., Hennebel, T.: Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 33, 327–335 (2015)CrossRefGoogle Scholar
  17. 17.
    Salo, M., Mäkinen, J., Yang, J., Kurhila, M., Koukkari, P.: Continuous biological sulfate reduction from phosphogypsum waste leachate. Hydrometallurgy (2018).  https://doi.org/10.1016/j.hydromet.2018.06.020CrossRefGoogle Scholar
  18. 18.
    Mäkinen, J., Bomberg, M., Salo, M., Arnold, M., Koukkari, P.: Rare earth elements recovery and sulphate removal from phosphogypsum waste waters with sulphate reducing bacteria. In: 22nd International Biohydrometallurgy Symposium Solid State Phenomena, vol. 262, pp. 573–576 (2017)CrossRefGoogle Scholar
  19. 19.
    Chernysh, Y., Balintova, M., Plyatsuk, L., Holub, M., Demcak, S.: The influence of phosphogypsum addition on phosphorus release in biochemical treatment of sewage sludge. Int. J. Environ. Res. Public Health 15, 1269 (2018)CrossRefGoogle Scholar
  20. 20.
    Brandl, H., Barmettler, F., Castelberg, C., Fabbri, C.: Microbial mobilization of rare earth elements (REE) from mineral solids: a mini review mentioned. AIMS Microbiol. 3(2), 190–204 (2016).  https://doi.org/10.3934/microbiol.2016.2.190CrossRefGoogle Scholar
  21. 21.
    Method of processing phosphogypsum with recovery of rare-earth elements and phosphorus. Patent № 2457267. MPK C22B59/00 (2006.01) (2012)Google Scholar
  22. 22.
    Cánovas, C.R., Macías, F., Pérez López, R., Nieto, J.M.: Mobility of rare earth elements, yttrium and scandium from a phosphogypsum stack: environmental and economic implications. Sci. Total Environ. 618, 847–857 (2018)CrossRefGoogle Scholar
  23. 23.
    Chernish, Ye, Plyatsuk, L.: Opportunity of biochemical process for phosphogypsum utilization. J. Solid Waste Technol. Manag. 42(2), 108–115 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Technical University of KosiceKosiceSlovakia

Personalised recommendations