Advertisement

Simulation of the Influence of High-Voltage Pulsed Potential Supplied During the Deposition on the Structure and Properties of the Vacuum-Arc Nitride Coatings

  • Nataliya PinchukEmail author
  • Oleg Sobol
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

TiN films have been deposited on stainless steel plates using plasma based the ion implantation & deposition (PBII&D) with a negative pulse voltage from 850 to 2000 V. According to the results of X-ray structural analysis, the formation of titanium nitride with a cubic crystal lattice of the NaCl structural type is seen to occur. Computer simulation allows determining the depth of the layer that is exposed to the radiation, taking into account all the cascade damage. The depth of the layer varies from 3 to 4.4 nm with an increase of negative impulse potential (Uip) from 850 to 2000 V, respectively. A transition of the texture from [111] to [110] is present in TiN coatings with an increase of Uip. In the case of a pulse duration of 10 and 16 μs in the entire range of Uip used, the following dependences are observed: with the increasing Uip, the deformation of the crystallite lattice decreases with the axis of the texture [111] and increases with the corresponding deformation in the crystallite with the axis of the texture [110].

Keywords

Computer simulation Particle energy Structural engineering Texture 

References

  1. 1.
    Ivashchenko, V.I., Dub, S.N., Scrynskii, P.L., Pogrebnjak, A.D., Sobol’, O.V., Tolmacheva, G.N., Rogoz, V.M., Sinel’chenko, A.K.: Nb-Al-N thin films: structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a-Al. J. Superhard Mater. 38(2), 103–113 (2016)CrossRefGoogle Scholar
  2. 2.
    Bradley, R.M., Harper, J.M.E., Smith, D.A.: Theory of thin-film orientation by ion bombardment during deposition. J. Appl. Phys. 60, 4160 (1986)CrossRefGoogle Scholar
  3. 3.
    Heinrich, S., Schirmer, S., Hirsch, D., Gerlach, J.W., Manova, D., Assmann, W., Mändl, S.: Comparison of ZrN and TiN formed by plasma based ion implantation & deposition. Surf. Coat. Technol. 202(11), 2310–2313 (2008)CrossRefGoogle Scholar
  4. 4.
    Sobol’, O.V.: The influence of nonstoichiometry on elastic characteristics of metastable β-WC1-x phase in ion plasma condensates. Tech. Phys. Lett. 42(9), 909–911 (2016)CrossRefGoogle Scholar
  5. 5.
    Hirata, Y., Ishikawa, T., Choi, J., Sasaki, S.: Analysis of microstructure and surface morphology of a-C: H films deposited on a trench target. Diam. Relat. Mater. 83, 1–7 (2018)CrossRefGoogle Scholar
  6. 6.
    Bermeo, F., Quintana, J.P., Kleiman, A., Sequeda, F., Márquez, A.: 1020 steel coated with Ti/TiN by cathodic arc and ion implantation. J. Phys. Conf. Ser. 792(1), 012061 (2017)CrossRefGoogle Scholar
  7. 7.
    Mukherjee, S., Prokert, F., Richter, E., Möller, W.: Intrinsic stress and preferred orientation in TiN coatings deposited on Al using plasma immersion ion implantation assisted deposition. Thin Solid Films 445(1), 48–53 (2003)CrossRefGoogle Scholar
  8. 8.
    Pelletier, J., Anders, A.: Plasma-based ion implantation and deposition: a review of physics, technology, and applications. IEEE Trans. Plasma Sci. 33(6), 1944–1959 (2006)CrossRefGoogle Scholar
  9. 9.
    Sano, M., Yukimura, K., Maruyama, T., Kurooka, S., Suzuki, Y., Chayahara, A., Kinomura, A., Horino, Y.: Titanium nitride coating on implanted layer using titanium plasma based ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B 148(1–4), 37–41 (1999)CrossRefGoogle Scholar
  10. 10.
    Mändl, S., Thorwarth, G., Stritzker, B., Rauschenbach, B.: Two-dimensional texture and sheath evolution in metal plasma immersion ion implantation. Surf. Coat. Technol. 200(1–4), 589–593 (2005)CrossRefGoogle Scholar
  11. 11.
    Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010)Google Scholar
  12. 12.
    Sobol’, O.V., Shovkoplyas, O.A.: On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Tech. Phys. Lett. 39(6), 536–539 (2013)CrossRefGoogle Scholar
  13. 13.
    Sobol’, O.V., Andreev, A.A., Gorban’, V.F., Krapivka, N.A., Stolbovoi, V.A., Serdyuk, I.V., Fil’chikov, V.E.: Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Tech. Phys. Lett. 38(7), 616 (2012)CrossRefGoogle Scholar
  14. 14.
    Cisternas, M., Mellero, F., Favre, M., Bhuyan, H., Wyndham, E.: TiN coatings on titanium substrates using plasma assisted ion implantation. J. Phys. Conf. Ser. 591(1), 012043 (2015)CrossRefGoogle Scholar
  15. 15.
    Kuo, L.-Y., Shen, P.: On the condensation and preferred orientation of TiC nanocrystals—effects of electric field, substrate temperature and second phase. Mater. Sci. Eng. A 276(1–2), 99–107 (2000)CrossRefGoogle Scholar
  16. 16.
    Karabacak, T., Senkevich, J.J., Wang, G.C., Lu, T.: Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures. J. Vac. Sci. Technol. A 23(4), 986–990 (2005)CrossRefGoogle Scholar
  17. 17.
    Wu, Y.G., Cao, E.H., Wang, Z.S., Wei, J.M., Tang, W.X., Chen, L.Y.: Stress anisotropy in circular planar magnetron sputter deposited molybdenum films and its annealing effect. Appl. Phys. A 76(2), 147–152 (2003)CrossRefGoogle Scholar
  18. 18.
    Lim, S.H.N., McCulloch, D.G., Bilek, M.M.M., McKenzie, D.R.: Minimisation of intrinsic stress in titanium nitride using a cathodic arc with plasma immersion ion implantation. Surf. Coat. Technol. 174–175, 76–80 (2003)CrossRefGoogle Scholar
  19. 19.
    Metel, A.S., Grigoriev, S.N., Melnik, YuA, Panin, V.V.: Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge. Plasma Phys. Rep. 35(12), 1058–1067 (2009)CrossRefGoogle Scholar
  20. 20.
    Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., Panin, V.V., Prudnikov, V.V.: A compact vapor source of conductive target material sputtered by 3-kev ions at 0.05-pa pressure. Instrum. Exp. Tech. 5, 731–737 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations