Advertisement

What Is the Scientific Basis for Knee Ligament Healing and Maturation to Restore Biomechanical Properties and a Return to Sport?

  • Andrew Smith
  • Frank R. Noyes
Chapter

Abstract

Injury to the anterior cruciate ligament (ACL) can lead to significant dysfunction and instability in athletes. Over the last several decades, a vast body of research has been published on reconstruction techniques to restore knee stability and limit future injury to the meniscus and chondral surfaces of the knee. Overall, satisfactory patient outcomes can be achieved with a high percentage of patients returning to high levels of activity. Despite extensive research on the natural history of ACL injuries, reconstructive techniques, and the biology of healing, there are still many unanswered questions. There are many potential factors for ACL failure and resultant laxity postoperatively. Despite proper patient selection, graft choice, surgical technique, and postoperative rehabilitation, there are still other factors still not completely understood that play a role in a successful patient outcome. The biological phenomenon known as ligamentization and the maturation process that the ACL graft undergoes is complex, intricate, and still a matter of debate. The healing process of the grafted ACL and its ultimate role in restoring normal function of the knee is still not completely understood; however, we aim to summarize the most current evidence to help guide decision-making in eventual safe return to sports (RTS) and activities.

Keywords

Ligamentization ACL graft healing ACL biomechanics ACL graft maturation 

References

  1. 1.
    Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy. 2014;100(3):187–95.  https://doi.org/10.1016/j.physio.2013.11.002.CrossRefPubMedGoogle Scholar
  3. 3.
    Fujioka H, Thakur R, Wang GJ, Mizuno K, Balian G, Hurwitz SR. Comparison of surgically attached and non-attached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect Tissue Res. 1998;37(3–4):205–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Niyibizi C, Sagarrigo Visconti C, Gibson G, Kavalkovich K. Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun. 1996;222(2):584–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Sagarriga H, Visconti C, Kavalkovich K, Wu J, Niyibizi C. Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys. 1996;328(1):135–42.CrossRefGoogle Scholar
  6. 6.
    Butler DL, Grood ES, Noyes FR, Zernicke RF. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev. 1978;6:125–81.PubMedGoogle Scholar
  7. 7.
    Perrone GS, Proffen BL, Kiapour AM, Sieker JT, Fleming BC, Murray MM. Bench-to-bedside: bridge-enhanced anterior cruciate ligament repair. J Orthop Res. 2017;35(12):2606–12.  https://doi.org/10.1002/jor.23632.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82-A(10):1387–97.CrossRefGoogle Scholar
  9. 9.
    Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year followup study. Clin Orthop Relat Res. 1996;325:4–9.CrossRefGoogle Scholar
  10. 10.
    Marshall JL, Warren RF, Wickiewicz TL. Primary surgical treatment of anterior cruciate ligament lesions. Am J Sports Med. 1982;10(2):103–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. Association of KT-1000 measurements with clinical tests of knee stability 1 year following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1999;29(9):540–5.  https://doi.org/10.2519/jospt.1999.29.9.540.CrossRefPubMedGoogle Scholar
  12. 12.
    Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15–23 years postoperatively. Arch Orthop Trauma Surg. 2005;125(4):217–21.  https://doi.org/10.1007/s00402-004-0766-2.CrossRefPubMedGoogle Scholar
  13. 13.
    Vavken P, Murray MM. The potential for primary repair of the ACL. Sports Med Arthrosc Rev. 2011;19(1):44–9.  https://doi.org/10.1097/JSA.0b013e3182095e5d.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    DiFelice GS, van der List JP. Clinical outcomes of arthroscopic primary repair of proximal anterior cruciate ligament tears are maintained at mid-term follow-up. Arthroscopy. 2018;34(4):1085–93.  https://doi.org/10.1016/j.arthro.2017.10.028.CrossRefPubMedGoogle Scholar
  15. 15.
    Alm A, Stromberg B. Transposed medial third of patellar ligament in reconstruction of the anterior cruciate ligament. A surgical and morphologic study in dogs. Acta Chir Scand Suppl. 1974;445:37–49.PubMedGoogle Scholar
  16. 16.
    Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984;1(3):257–65.  https://doi.org/10.1002/jor.1100010305.CrossRefPubMedGoogle Scholar
  17. 17.
    Kirschner S. Wilhelm Roux's concept of'developmental mechanics. Wurzburger medizinhistorische Mitteilungen. 2003;22:67–80.PubMedGoogle Scholar
  18. 18.
    Roux W. Die Entwicklungsmechanik, ein neuer Zweig der biologischen Wissenschaft 1904. In: Von der Naturforschung zur Naturwissenschaft: Springer; 1987. p. 265–86.Google Scholar
  19. 19.
    Cooper DE, Deng XH, Burstein AL, Warren RF. The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med. 1993;21(6):818–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg. 1999;81A:549–57.CrossRefGoogle Scholar
  21. 21.
    Arnoczky SP, Warren RF, Ashlock MA. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg. 1986;68A(3):376–85.CrossRefGoogle Scholar
  22. 22.
    Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med. 1993;21(2):176–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleiner JB, Amiel D, Roux RD, Akeson WH. Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res. 1986;4(4):466–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15(3):225–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Goradia VK, Rochat MC, Grana WA, Rohrer MD, Prasad HS. Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J Knee Surg. 2000;13(3):143–51.PubMedGoogle Scholar
  26. 26.
    Liu SH, Panossian V, al-Shaikh R, Tomin E, Shepherd E, Finerman GA, Lane JM. Morphology and matrix composition during early tendon to bone healing. Clin Orthop Relat Res. 1997;339:253–60.CrossRefGoogle Scholar
  27. 27.
    Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995;(318):265–78.Google Scholar
  28. 28.
    Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–803.PubMedCrossRefGoogle Scholar
  29. 29.
    Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP. Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18(2):124–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Blickenstaff KR, Grana WA, Egle D. Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med. 1997;25(4):554–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy. 2001;17(5):461–76.  https://doi.org/10.1053/jars.2001.24059.CrossRefPubMedGoogle Scholar
  32. 32.
    Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T. The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med. 2005;33(12):1892–7.  https://doi.org/10.1177/0363546505277140.CrossRefPubMedGoogle Scholar
  33. 33.
    Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH. The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med. 1997;25(6):751–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Higuchi H, Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, Takagishi K. Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop. 2006;30(1):43–7.  https://doi.org/10.1007/s00264-005-0023-5.CrossRefGoogle Scholar
  35. 35.
    Kleiner JB, Amiel D, Harwood FL, Akeson WH. Early histologic, metabolic, and vascular assessment of anterior cruciate ligament autografts. J Orthop Res. 1989;7(2):235–42.  https://doi.org/10.1002/jor.1100070211.CrossRefPubMedGoogle Scholar
  36. 36.
    Shino K, Horibe S. Experimental ligament reconstruction by allogeneic tendon graft in a canine model. Acta Orthop Belg. 1991;57(Suppl 2):44–53.PubMedGoogle Scholar
  37. 37.
    Yoshikawa T, Tohyama H, Katsura T, Kondo E, Enomoto H, Matsumoto H, Toyama Y, Yasuda K. Local administration of VEGF enhances mechanical deterioration of the tendon grafted to reconstruct the ACL, although it accelerates angionesis and cellularity and infiltration: a sheep model study. In: Paper presented at the Transactions of the Orthopedic Research. Washington DC; 2005.Google Scholar
  38. 38.
    Bosch U, Kasperczyk WJ, Oestern HJ, Tscherne H. The patellar tendon graft for PCL reconstruction. Morphological aspects in a sheep model. Acta Orthop Belg. 1994;60(Suppl 1):57–61.PubMedGoogle Scholar
  39. 39.
    Bosch U, Decker B, Kasperczyk W, Nerlich A, Oestern H-J, Tscherne H. The relationship of mechanical properties to morphology in patellar tendon autografts after posterior cruciate ligament replacement in sheep. J Biomech. 1992;25(8):821–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Steiner ME, Murray MM, Rodeo SA. Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med. 2008;36(1):176–89.  https://doi.org/10.1177/0363546507311690.CrossRefPubMedGoogle Scholar
  41. 41.
    Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79.  https://doi.org/10.2106/JBJS.F.00531.CrossRefPubMedGoogle Scholar
  42. 42.
    Warden SJ, Metcalf BR, Kiss ZS, Cook JL, Purdam CR, Bennell KL, Crossley KM. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford). 2008;47(4):467–71.  https://doi.org/10.1093/rheumatology/kem384.CrossRefGoogle Scholar
  43. 43.
    Grana WA, Egle DM, Mahnken R, Goodhart CW. An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med. 1994;22(3):344–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL. A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med. 2001;29(5):620–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Weiler A, Forster C, Hunt P, Falk R, Jung T, Unterhauser FN, Bergmann V, Schmidmaier G, Haas NP. The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(4):881–91.  https://doi.org/10.1177/0363546503261711.CrossRefPubMedGoogle Scholar
  46. 46.
    Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K. Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res. 1993;11(4):592–602.PubMedCrossRefGoogle Scholar
  47. 47.
    Majima T, Yasuda K, Yamamoto N, Kaneda K, Hayashi K. Deterioration of mechanical properties of the autograft in controlled stress-shielded augmentation procedures. An experimental study with rabbit patellar tendon. Am J Sports Med. 1994;22(6):821–9.  https://doi.org/10.1177/036354659402200614.CrossRefPubMedGoogle Scholar
  48. 48.
    Majima T, Yasuda K, Tsuchida T, Tanaka K, Miyakawa K, Minami A, Hayashi K. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci. 2003;8(6):836–41.  https://doi.org/10.1007/s00776-003-0707-x.CrossRefPubMedGoogle Scholar
  49. 49.
    Flint MH, Craig AS, Reilly HC, Gillard GC, Parry DA. Collagen fibril diameters and glycosaminoglycan content of skins--indices of tissue maturity and function. Connect Tissue Res. 1984;13(1):69–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Parry DA, Barnes GR, Craig AS. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci. 1978;203(1152):305–21.  https://doi.org/10.1098/rspb.1978.0107.CrossRefPubMedGoogle Scholar
  51. 51.
    Rougraff BT, Shelbourne KD. Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 1999;7(1):9–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Johnson LL. The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study. Arthroscopy. 1993;9(2):131–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Ballock RT, Woo SL-Y, Lyon RM, Hollis JM, Akeson WH. Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long-term histologic and biomechanical study. J Orthop Res. 1989;7:474–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K. Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg. 1984;66B(5):672–81.CrossRefGoogle Scholar
  55. 55.
    Unterhauser FN, Bail HJ, Hoher J, Haas NP, Weiler A. Endoligamentous revascularization of an anterior cruciate ligament graft. Clin Orthop Relat Res. 2003;414:276–88.CrossRefGoogle Scholar
  56. 56.
    Scheffler S, Dustmann M, Gangey I, Schulz T, Unterhauser F, Weiler A. The biological healing and restoration of the mechanical properties of free soft-tissue allografts lag behind autologous ACL reconstruction in the sheep model. In: Paper presented at the Transactions of the Orthopedic Research. Washington DC; 2005.Google Scholar
  57. 57.
    Kuroda R, Kurosaka M, Yoshiya S, Mizuno K. Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surg Sports Traumatol Arthrosc. 2000;8(2):120–6.  https://doi.org/10.1007/s001670050198.CrossRefPubMedGoogle Scholar
  58. 58.
    Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K, Tanaka K. Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res. 1997;15(6):904–10.  https://doi.org/10.1002/jor.1100150617.CrossRefPubMedGoogle Scholar
  59. 59.
    Jackson JR, Minton JA, Ho ML, Wei N, Winkler JD. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol. 1997;24(7):1253–9.PubMedGoogle Scholar
  60. 60.
    Petersen W, Unterhauser F, Pufe T, Zantop T, Sudkamp NP, Weiler A. The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg. 2003;123(4):168–74.  https://doi.org/10.1007/s00402-002-0462-z.CrossRefPubMedGoogle Scholar
  61. 61.
    Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med. 1999;27(4):476–88.PubMedCrossRefGoogle Scholar
  62. 62.
    Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18(2):113–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of "ligamentization": anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4(2):162–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Butler DL, Grood ES, Noyes FR, Olmstead ML, Hohn RB, Arnoczky SP, Siegel MG. Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time. J Orthop Res. 1989;7(1):68–79.  https://doi.org/10.1002/jor.1100070110.CrossRefPubMedGoogle Scholar
  65. 65.
    Clancy WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. A histological, microangiographic, and biomechanical analysis. J Bone Joint Surg. 1981;63A(8):1270–84.CrossRefGoogle Scholar
  66. 66.
    Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med. 2001;29(6):751–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshikawa T, Tohyama H, Enomoto H, Matsumoto H, Toyama Y, Yasuda K. Temporal changes in relationships between fibroblast repopulation, VEGF expression, and angiogenesis in the patellar tendon graft after ACL reconstruction. In: Paper presented at the Transactions of the Orthopedic Research. San Francisco, CA; 2003.Google Scholar
  68. 68.
    Ng GY, Oakes BW, Deacon OW, McLean ID, Eyre DR. Long-term study of the biochemistry and biomechanics of anterior cruciate ligament-patellar tendon autografts in goats. J Orthop Res. 1996;14(6):851–6.  https://doi.org/10.1002/jor.1100140602.CrossRefPubMedGoogle Scholar
  69. 69.
    Howell SM, Knox KE, Farley TE, Taylor MA. Revascularization of a human anterior cruciate ligament graft during the first two years of implantation. Am J Sports Med. 1995;23(1):42–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Weiler A, Unterhauser FN, Bail HJ, Huning M, Haas NP. Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling. J Orthop Res. 2002;20(2):310–7.  https://doi.org/10.1016/S0736-0266(01)00109-7.CrossRefPubMedGoogle Scholar
  71. 71.
    Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993;9(4):394–405.PubMedCrossRefGoogle Scholar
  72. 72.
    Petersen W, Laprell H. Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc. 2000;8(1):26–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Frank CB. Ligament healing: current knowledge and clinical applications. J Am Acad Orthop Surg. 1996;4(2):74–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Greenlee TK Jr, Pike D. Studies of tendon healing in the rat. Remodeling of the distal stump after severance. Plast Reconstr Surg. 1971;48(3):260–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Peach R, Williams G, Chapman J. A light and electron optical study of regenerating tendon. Am J Pathol. 1961;38(4):495.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Postacchini F, Accinni L, Natali PG, Ippolito E, DeMartino C. Regeneration of rabbit calcaneal tendon: a morphological and immunochemical study. Cell Tissue Res. 1978;195(1):81–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Bosch U, Kasperczyk WJ. Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction – a process of ligamentization? An experimental study in a sheep model. Am J Sports Med. 1992;20(5):558–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Ng GY, Oakes BW, Deacon OW, McLean ID, Lampard D. Biomechanics of patellar tendon autograft for reconstruction of the anterior cruciate ligament in the goat: three-year study. J Orthop Res. 1995;13(4):602–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Yoshiya S, Nagano M, Kurosaka M, Muratsu H, Mizuno K. Graft healing in the bone tunnel in anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2000;376:278–86.CrossRefGoogle Scholar
  80. 80.
    Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(9):834–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Claes S, Verdonk P, Forsyth R, Bellemans J. The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med. 2011;39:2476–83.PubMedCrossRefGoogle Scholar
  82. 82.
    Berg EE, Pollard ME, Kang Q. Interarticular bone tunnel healing. Arthroscopy. 2001;17(2):189–95.  https://doi.org/10.1053/jars.2001.20958.CrossRefPubMedGoogle Scholar
  83. 83.
    Woo SL. Ligament, tendon, and joint capsule insertions to bone. In: Woo SL, Buckwalter JA, editors. Musculoskeletal soft tissues. Chicago: Am Acad Orthop Surg; 1994. p. 136–66.Google Scholar
  84. 84.
    Chen CH. Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):21.  https://doi.org/10.1186/1758-2555-1-21.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Fu FH, Bennett CH, Lattermann C, Ma CB. Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med. 1999;27(6):821–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Panni AS, Milano G, Lucania L, Fabbriciani C. Graft healing after anterior cruciate ligament reconstruction in rabbits. Clin Orthop Relat Res. 1997;343:203-212.CrossRefGoogle Scholar
  87. 87.
    Ishibashi Y, Toh S, Okamura Y, Sasaki T, Kusumi T. Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Am J Sports Med. 2001;29(4):473–9.  https://doi.org/10.1177/03635465010290041601.CrossRefPubMedGoogle Scholar
  88. 88.
    Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984;66(3):344–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Shino K, Nakata K, Horibe S, Inoue M, Nakagawa S. Quantitative evaluation after arthroscopic anterior cruciate ligament reconstruction. Allograft versus autograft. Am J Sports Med. 1993;21(4):609–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Uchida R, Shiozaki Y, Tanaka Y, Kita K, Amano H, Kanamoto T, Mae T, Tachibana Y, Takao R, Horibe S. Relationship between bone plug position and morphological changes of tunnel aperture in anatomic rectangular tunnel ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018;  https://doi.org/10.1007/s00167-018-5224-8.PubMedCrossRefGoogle Scholar
  91. 91.
    Bedi A, Kawamura S, Ying L, Rodeo SA. Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel. HSS J. 2009;5(1):51–7.  https://doi.org/10.1007/s11420-008-9096-1.CrossRefPubMedGoogle Scholar
  92. 92.
    Robert H, Es-Sayeh J, Heymann D, Passuti N, Eloit S, Vaneenoge E. Hamstring insertion site healing after anterior cruciate ligament reconstruction in patients with symptomatic hardware or repeat rupture: a histologic study in 12 patients. Arthroscopy. 2003;19(9):948–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Kanazawa T, Soejima T, Murakami H, Inoue T, Katouda M, Nagata K. An immunohistological study of the integration at the bone-tendon interface after reconstruction of the anterior cruciate ligament in rabbits. J Bone Joint Surg. 2006;88(5):682–7.  https://doi.org/10.1302/0301-620X.88B5.17198.CrossRefGoogle Scholar
  94. 94.
    Deehan DJ, Cawston TE. The biology of integration of the anterior cruciate ligament. J Bone Joint Surg. 2005;87(7):889–95.  https://doi.org/10.1302/0301-620X.87B7.16038.CrossRefGoogle Scholar
  95. 95.
    Weiler A, Scheffler SU, Sudkamp NP. Current aspects of anchoring hamstring tendon transplants in cruciate ligament surgery. Chirurg. 2000;71(9):1034–44.PubMedCrossRefGoogle Scholar
  96. 96.
    Noyes FR, Barber-Westin SD. Anterior cruciate ligament revision reconstruction: graft options and clinical outcomes. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 221–57.CrossRefGoogle Scholar
  97. 97.
    Schulte K. Radiographic tunnel changes following arthroscopic ACL reconstruction: autograft versus allograft. Arthroscopy. 1995;11:372.Google Scholar
  98. 98.
    Nebelung W, Becker R, Urbach D, Ropke M, Roessner A. Histological findings of tendon-bone healing following anterior cruciate ligament reconstruction with hamstring grafts. Arch Orthop Trauma Surg. 2003;123(4):158–63.  https://doi.org/10.1007/s00402-002-0463-y.CrossRefPubMedGoogle Scholar
  99. 99.
    Rodeo SA, Council on Musculoskeletal Specialty S, American Academy of Orthopaedic S. Whats new in orthopaedic research. J Bone Joint Surg Am. 2003;85-A(10):2054–62.CrossRefGoogle Scholar
  100. 100.
    Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med. 2006;34(11):1790–800.  https://doi.org/10.1177/0363546506290059.CrossRefPubMedGoogle Scholar
  101. 101.
    Grassman SR, McDonald DB, Thornton GM, Shrive NG, Frank CB. Early healing processes of free tendon grafts within bone tunnels is bone-specific: a morphological study in a rabbit model. Knee. 2002;9(1):21–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP. Biodegradable implants in sports medicine: the biological base. Arthroscopy. 2000;16(3):305–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Weiler A, Helling HJ, Kirch U, Zirbes TK, Rehm KE. Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. J Bone Joint Surg. 1996;78(3):369–76.CrossRefGoogle Scholar
  104. 104.
    Bostman O, Paivarinta U, Manninen M, Rokkanen P. Polymeric debris from absorbable polyglycolide screws and pins. Intraosseous migration studied in rabbits. Acta Orthop Scand. 1992;63(5):555–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Lam KH, Schakenraad JM, Esselbrugge H, Feijen J, Nieuwenhuis P. The effect of phagocytosis of poly(L-lactic acid) fragments on cellular morphology and viability. J Biomed Mater Res. 1993;27(12):1569–77.  https://doi.org/10.1002/jbm.820271214.CrossRefPubMedGoogle Scholar
  106. 106.
    Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17(8):831–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Daniels A, Taylor M, Andriano K. Heller J toxicity of absorbable polymers proposed for fracture fixation devices. In: Proc Orthop Res Soc; 1992. p. 88.Google Scholar
  108. 108.
    Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.PubMedCrossRefGoogle Scholar
  109. 109.
    Singhatat W, Lawhorn KW, Howell SM, Hull ML. How four weeks of implantation affect the strength and stiffness of a tendon graft in a bone tunnel: a study of two fixation devices in an extraarticular model in ovine. Am J Sports Med. 2002;30(4):506–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Magen HE, Howell SM, Hull ML. Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med. 1999;27(1):35–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Tien YC, Chih HW, Cheng YM, Su JY, Weng YP, Lin SY. The influence of the gap size on the interfacial union between the bone and the tendon. Kaohsiung J Med Sci. 1999;15(10):581–8.PubMedGoogle Scholar
  112. 112.
    Greis PE, Burks RT, Bachus K, Luker MG. The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med. 2001;29(4):493–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H. The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1086–93.  https://doi.org/10.1007/s00167-006-0110-1.CrossRefPubMedGoogle Scholar
  114. 114.
    Yu JK, Paessler HH. Relationship between tunnel widening and different rehabilitation procedures after anterior cruciate ligament reconstruction with quadrupled hamstring tendons. Chin Med J. 2005;118(4):320–6.PubMedGoogle Scholar
  115. 115.
    Sakai H, Fukui N, Kawakami A, Kurosawa H. Biological fixation of the graft within bone after anterior cruciate ligament reconstruction in rabbits: effects of the duration of postoperative immobilization. J Orthop Sci. 2000;5(1):43–51.PubMedCrossRefGoogle Scholar
  116. 116.
    Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA. Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am. 2011;93(4):381–93.  https://doi.org/10.2106/JBJS.I.00933.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Packer JD, Bedi A, Fox AJ, Gasinu S, Imhauser CW, Stasiak M, Deng XH, Rodeo SA. Effect of immediate and delayed high-strain loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2014;96(9):770–7.  https://doi.org/10.2106/JBJS.L.01354.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Amis AA, Jakob RP. Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc. 1998;6(Suppl 1):S2–12.PubMedCrossRefGoogle Scholar
  119. 119.
    Fleming BC, Abate JA, Peura GD, Beynnon BD. The relationship between graft tensioning and the anterior-posterior laxity in the anterior cruciate ligament reconstructed goat knee. J Orthop Res. 2001;19(5):841–4.  https://doi.org/10.1016/S0736-0266(01)00020-1.CrossRefPubMedGoogle Scholar
  120. 120.
    Markolf KL, Burchfield DM, Shapiro MM, Davis BR, Finerman GA, Slauterbeck JL. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. J Bone Joint Surg Am. 1996;78(11):1720–7.PubMedCrossRefGoogle Scholar
  121. 121.
    More RC, Markolf KL. Measurement of stability of the knee and ligament force after implantation of a synthetic anterior cruciate ligament. In vitro measurement. J Bone Joint Surg Am. 1988;70(7):1020–31.PubMedCrossRefGoogle Scholar
  122. 122.
    Yasuda K, Tsujino J, Tanabe Y, Kaneda K. Effects of initial graft tension on clinical outcome after anterior cruciate ligament reconstruction. Autogenous doubled hamstring tendons connected in series with polyester tapes. Am J Sports Med. 1997;25(1):99–106.  https://doi.org/10.1177/036354659702500120.CrossRefPubMedGoogle Scholar
  123. 123.
    Yoshiya S, Andrish JT, Manley MT, Bauer TW. Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs. Am J Sports Med. 1987;15(5):464–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL. The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res. 2003;21(4):708–15.  https://doi.org/10.1016/S0736-0266(02)00265-6.CrossRefPubMedGoogle Scholar
  125. 125.
    Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K. The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy. 2002;18(1):82–90.PubMedCrossRefGoogle Scholar
  126. 126.
    Bach BR Jr, Aadalen KJ, Dennis MG, Carreira DS, Bojchuk J, Hayden JK, Bush-Joseph CA. Primary anterior cruciate ligament reconstruction using fresh-frozen, nonirradiated patellar tendon allograft: minimum 2-year follow-up. Am J Sports Med. 2005;33(2):284–92.PubMedCrossRefGoogle Scholar
  127. 127.
    Barrett G, Stokes D, White M. Anterior cruciate ligament reconstruction in patients older than 40 years: allograft versus autograft patellar tendon. Am J Sports Med. 2005;33(10):1505–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Hettrich CM, Dunn WR, Reinke EK, Group M, Spindler KP. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med. 2013;41(7):1534–40.  https://doi.org/10.1177/0363546513490277.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Noyes FR, Barber SD. The effect of a ligament-augmentation device on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg Am. 1992;74(7):960–73.CrossRefGoogle Scholar
  130. 130.
    Noyes FR, Barber-Westin SD, Roberts CS. Use of allografts after failed treatment of rupture of the anterior cruciate ligament. J Bone Joint Surg Am. 1994;76(7):1019–31.PubMedCrossRefGoogle Scholar
  131. 131.
    Arnoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res. 1983;(172):19–25.Google Scholar
  132. 132.
    Arnoczky SP. Biology of ACL reconstructions: what happens to the graft? Instr Course Lect. 1996;45:229–33.PubMedGoogle Scholar
  133. 133.
    Arnoczky SP, Rubin RM, Marshall JL. Microvasculature of the cruciate ligaments and its response to injury. An experimental study in dogs. J Bone Joint Surg. 1979;61A(8):1221–9.CrossRefGoogle Scholar
  134. 134.
    Jackson DW, Simon TM, Kurzweil PR, Rosen MA. Survival of cells after intra-articular transplantation of fresh allografts of the patellar and anterior cruciate ligaments. DNA-probe analysis in a goat model. J Bone Joint Surg Am. 1992;74(1):112–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Jackson DW, Corsetti J, Simon TM. Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res. 1996;324:126–33.CrossRefGoogle Scholar
  136. 136.
    Zhang CL, Fan HB, Xu H, Li QH, Guo L. Histological comparison of fate of ligamentous insertion after reconstruction of anterior cruciate ligament: autograft vs allograft. Chin J Traumatol. 2006;9(2):72–6.PubMedGoogle Scholar
  137. 137.
    Jackson DW, Grood ES, Cohn BR, Arnoczky SP, Simon TM, Cummings JF. The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg. 1991;73A(2):201–13.CrossRefGoogle Scholar
  138. 138.
    Jackson DW, Grood ES, Arnoczky SP, Butler DL, Simon TM. Freeze dried anterior cruciate ligament allografts. Preliminary studies in a goat model. Am J Sports Med. 1987;15(4):295–303.PubMedCrossRefGoogle Scholar
  139. 139.
    Jackson DW, Simon TM. Donor cell survival and repopulation after intraarticular transplantation of tendon and ligament allografts. Microsc Res Tech. 2002;58(1):25–33.PubMedCrossRefGoogle Scholar
  140. 140.
    Rodrigo J, Jackson D, Simon T, Muto K. The immune response to freeze-dried bone-tendon-bone ACL allografts in humans. Am J Knee Surg. 1993;6:47–53.Google Scholar
  141. 141.
    Xiao Y, Parry DA, Li H, Arnold R, Jackson WJ, Bartold PM. Expression of extracellular matrix macromolecules around demineralized freeze-dried bone allografts. J Periodontol. 1996;67(11):1233–44.  https://doi.org/10.1902/jop.1996.67.11.1233.CrossRefPubMedGoogle Scholar
  142. 142.
    Harris NL, Indelicato PA, Bloomberg MS, Meister K, Wheeler DL. Radiographic and histologic analysis of the tibial tunnel after allograft anterior cruciate ligament reconstruction in goats. Am J Sports Med. 2002;30(3):368–73.  https://doi.org/10.1177/03635465020300031101.CrossRefPubMedGoogle Scholar
  143. 143.
    Horstman JK, Ahmadu-Suka F, Norrdin RW. Anterior cruciate ligament fascia lata allograft reconstruction: progressive histologic changes toward maturity. Arthroscopy. 1993;9(5):509–18.PubMedCrossRefGoogle Scholar
  144. 144.
    Malinin TI, Levitt RL, Bashore C, Temple HT, Mnaymneh W. A study of retrieved allografts used to replace anterior cruciate ligaments. Arthroscopy. 2002;18(2):163–70.PubMedCrossRefGoogle Scholar
  145. 145.
    Kaeding CC, Pedroza A, Aros BC, Dunn WR, Pifel E, Spindler KP. Independent predictors of ACL reconstruction failure from the MOON prospective longitudinal cohort. In: Paper presented at the AOSSM 2008 annual meeting. Orlando, FL; 2008.Google Scholar
  146. 146.
    Kraeutler MJ, Bravman JT, McCarty EC. Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med. 2013;41(10):2439–48.  https://doi.org/10.1177/0363546513484127.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Ellis HB, Matheny LM, Briggs KK, Pennock AT, Steadman JR. Outcomes and revision rate after bone-patellar tendon-bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy. 2012;28(12):1819–25.  https://doi.org/10.1016/j.arthro.2012.06.016.CrossRefGoogle Scholar
  148. 148.
    Barrett GR, Luber K, Replogle WH, Manley JL. Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy. 2010;26(12):1593–601.  https://doi.org/10.1016/j.arthro.2010.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26(4):509–24.  https://doi.org/10.1016/j.csm.2007.06.007.CrossRefPubMedGoogle Scholar
  150. 150.
    Kondo E, Yasuda K, Katsura T, Hayashi R, Kotani Y, Tohyama H. Biomechanical and histological evaluations of the doubled semitendinosus tendon autograft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2012;40(2):315–24.  https://doi.org/10.1177/0363546511426417.CrossRefPubMedGoogle Scholar
  151. 151.
    Kyung HS, Kim SY, Oh CW, Kim SJ. Tendon-to-bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon-to-bone interface. Knee Surg Sports Traumatol Arthrosc. 2003;11(1):9–15.  https://doi.org/10.1007/s00167-002-0317-8.CrossRefPubMedGoogle Scholar
  152. 152.
    Bolander ME. Inducers of osteogenesis. In: Friedlander GE, Goldberg VM, editors. Bone and cartilage allografts: biology and clinical applications. Park Ridge, IL: American Academhy of Orthopaedic Surgeons; 1991. p. 75–83.Google Scholar
  153. 153.
    Kato F. Experimental study of chemical spinal fusion in the rabbit by means of bone morphogenetic protein. Nihon Seikeigeka Gakkai zasshi. 1990;64(5):442–52.PubMedGoogle Scholar
  154. 154.
    Kawaguchi H, Kurokawa T, Hoshino Y, Kawahara H, Ogata E, Matsumoto T. Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-beta in the ossification of the posterior longitudinal ligament of the cervical spine. Spine (Phila Pa 1976). 1992;17(3 Suppl):S33–6.CrossRefGoogle Scholar
  155. 155.
    Miyamoto S, Takaoka K, Yonenobu K, Ono K. Ossification of the ligamentum flavum induced by bone morphogenetic protein. An experimental study in mice. J Bone Joint Surg. 1992;74(2):279–83.CrossRefGoogle Scholar
  156. 156.
    Lind M, Overgaard S, Soballe K, Nguyen T, Ongpipattanakul B, Bunger C. Transforming growth factor-beta 1 enhances bone healing to unloaded tricalcium phosphate coated implants: an experimental study in dogs. J Orthop Res. 1996;14(3):343–50.  https://doi.org/10.1002/jor.1100140303.CrossRefPubMedGoogle Scholar
  157. 157.
    Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am. 1995;77(8):1135–47.PubMedCrossRefGoogle Scholar
  158. 158.
    Woo S-Y. The effect of dose levels of growth factors on the healing of the rabbit medial collateral ligament. Trans Orthop Res Soc. 1996;21:97.Google Scholar
  159. 159.
    Yamazaki S, Yasuda K, Tomita F, Tohyama H, Minami A. The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy. 2005;21(9):1034–41.  https://doi.org/10.1016/j.arthro.2005.05.011.CrossRefPubMedGoogle Scholar
  160. 160.
    Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P, Bobinac D, Lah B, Legovic D, Vukicevic S. Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2004;32(7):1619–25.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA. Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med. 2001;29(6):689–98.PubMedCrossRefGoogle Scholar
  162. 162.
    Tien YC, Chih TT, Lin JH, Ju CP, Lin SD. Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg. 2004;86(7):1072–6.CrossRefGoogle Scholar
  163. 163.
    Dynybil C, Kawamura S, Kim HJ, Ying L, Perka C, Rodeo SA. The effect of osteoprotegerin on tendon-bone healing after reconstruction of the anterior cruciate ligament: a histomorphological and radiographical study in the rabbit. Z Orthop Ihre Grenzgeb. 2006;144(2):179–86.  https://doi.org/10.1055/s-2006-921466.CrossRefPubMedGoogle Scholar
  164. 164.
    Clatworthy MG, Annear P, Bulow J-U, Bartlett RJ. Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc. 1999;7:138–45.PubMedCrossRefGoogle Scholar
  165. 165.
    Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111–22.PubMedGoogle Scholar
  166. 166.
    Demirag B, Sarisozen B, Ozer O, Kaplan T, Ozturk C. Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. J Bone Joint Surg Am. 2005;87(11):2401–10.  https://doi.org/10.2106/JBJS.D.01952.CrossRefPubMedGoogle Scholar
  167. 167.
    Amiel D, Ishizue KK, Harwood FL, Kitabayashi L, Akeson WH. Injury of the anterior cruciate ligament: the role of collagenase in ligament degeneration. J Orthop Res. 1989;7(4):486–93.  https://doi.org/10.1002/jor.1100070405.CrossRefPubMedGoogle Scholar
  168. 168.
    Chubinskaya S, Huch K, Mikecz K, Cs-Szabo G, Hasty KA, Kuettner KE, Cole AA. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Investig. 1996;74(1):232–40.PubMedGoogle Scholar
  169. 169.
    Dahlberg L, Friden T, Roos H, Lark MW, Lohmander LS. A longitudinal study of cartilage matrix metabolism in patients with cruciate ligament rupture--synovial fluid concentrations of aggrecan fragments, stromelysin-1 and tissue inhibitor of metalloproteinase-1. Br J Rheumatol. 1994;33(12):1107–11.PubMedCrossRefGoogle Scholar
  170. 170.
    Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.  https://doi.org/10.1016/j.arthro.2004.06.035.CrossRefPubMedGoogle Scholar
  171. 171.
    Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 2003;14(6):523–35.PubMedCrossRefGoogle Scholar
  172. 172.
    Leask A, Holmes A, Abraham DJ. Connective tissue growth factor: a new and important player in the pathogenesis of fibrosis. Curr Rheumatol Rep. 2002;4(2):136–42.PubMedCrossRefGoogle Scholar
  173. 173.
    Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.  https://doi.org/10.1056/NEJM199909023411006.CrossRefPubMedGoogle Scholar
  174. 174.
    Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA. Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res. 2005;23(6):1425–32.  https://doi.org/10.1016/j.orthres.2005.01.014.1100230627.CrossRefPubMedGoogle Scholar
  175. 175.
    Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53(1):31–47.PubMedCrossRefGoogle Scholar
  176. 176.
    Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation. 2002;106(15):2019–25.PubMedCrossRefGoogle Scholar
  177. 177.
    Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337–45.PubMedGoogle Scholar
  178. 178.
    Messner K, Wei Y, Andersson B, Gillquist J, Rasanen T. Rat model of Achilles tendon disorder. A pilot study. Cells Tissues Organs. 1999;165(1):30–9.  https://doi.org/10.1159/000016671.CrossRefPubMedGoogle Scholar
  179. 179.
    Nathan CF. Secretory products of macrophages. J Clin Invest. 1987;79(2):319–26.  https://doi.org/10.1172/JCI112815.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Marsolais D, Cote CH, Frenette J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J Orthop Res. 2001;19(6):1203–9.  https://doi.org/10.1016/S0736-0266(01)00031-6.CrossRefPubMedGoogle Scholar
  181. 181.
    McLennan IS. Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres. Cell Tissue Res. 1993;272(1):193–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Vaage J, Lindblad WJ. Production of collagen type I by mouse peritoneal macrophages. J Leukoc Biol. 1990;48(3):274–80.PubMedCrossRefGoogle Scholar
  183. 183.
    St Pierre BA, Tidball JG. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J Appl Physiol. 1994;77(1):290–7.  https://doi.org/10.1152/jappl.1994.77.1.290.CrossRefPubMedGoogle Scholar
  184. 184.
    Brumsen C, Papapoulos SE, Lentjes EG, Kluin PM, Hamdy NA. A potential role for the mast cell in the pathogenesis of idiopathic osteoporosis in men. Bone. 2002;31(5):556–61.PubMedCrossRefGoogle Scholar
  185. 185.
    Hiromatsu Y, Toda S. Mast cells and angiogenesis. Microsc Res Tech. 2003;60(1):64–9.  https://doi.org/10.1002/jemt.10244.CrossRefPubMedGoogle Scholar
  186. 186.
    Glaser D, Ramachandran R, Shore E, Lin T, Yeh P, Beredjiklian P, Kaplan F, Goldhamer D, Soslowsky L. The origin of cells within a healing tendon. Trans Orthop Res Soc. 2003;28:340.Google Scholar
  187. 187.
    Harty M, Neff AW, King MW, Mescher AL. Regeneration or scarring: an immunologic perspective. Dev Dyn. 2003;226(2):268–79.  https://doi.org/10.1002/dvdy.10239.CrossRefPubMedGoogle Scholar
  188. 188.
    Hopkinson-Woolley J, Hughes D, Gordon S, Martin P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci. 1994;107 (. Pt 5:1159–67.PubMedGoogle Scholar
  189. 189.
    Martin P, D’Souza D, Martin J, Grose R, Cooper L, Maki R, McKercher SR. Wound healing in the PU.1 null mouse--tissue repair is not dependent on inflammatory cells. Curr Biol. 2003;13(13):1122–8.PubMedCrossRefGoogle Scholar
  190. 190.
    Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med. 2006;34(3):362–9.  https://doi.org/10.1177/0363546505280428.CrossRefPubMedGoogle Scholar
  191. 191.
    Hoher J, Moller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc. 1998;6(4):231–40.PubMedCrossRefGoogle Scholar
  192. 192.
    L'Insalata JC, Klatt B, Fu FH, Harner CD. Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc. 1997;5:234–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Lajtai G, Schmiedhuber G, Unger F, Aitzetmuller G, Klein M, Noszian I, Orthner E. Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up. Arthroscopy. 2001;17(6):597–602.PubMedCrossRefGoogle Scholar
  194. 194.
    Matsumoto T, Kubo S, Sasaki K, Kawakami Y, Oka S, Sasaki H, Takayama K, Tei K, Matsushita T, Mifune Y, Kurosaka M, Kuroda R. Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. Am J Sports Med. 2012;40(6):1296–302.  https://doi.org/10.1177/0363546512439026.CrossRefPubMedGoogle Scholar
  195. 195.
    Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M. Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med. 2008;36(8):1519–27.  https://doi.org/10.1177/0363546508316282.CrossRefPubMedGoogle Scholar
  196. 196.
    Webster KE, Chiu JJ, Feller JA. Impact of measurement error in the analysis of bone tunnel enlargement after anterior cruciate ligament reconstruction. Am J Sports Med. 2005;33(11):1680–7.  https://doi.org/10.1177/0363546505275489.CrossRefPubMedGoogle Scholar
  197. 197.
    Ferretti M, Ekdahl M, Shen W, Fu FH. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy. 2007;23(11):1218–25.PubMedCrossRefGoogle Scholar
  198. 198.
    White LM, Kramer J, Recht MP. MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage. Skelet Radiol. 2005;34(8):431–52.  https://doi.org/10.1007/s00256-005-0914-y.CrossRefGoogle Scholar
  199. 199.
    Ntoulia A, Papadopoulou F, Ristanis S, Argyropoulou M, Georgoulis AD. Revascularization process of the bone--patellar tendon--bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(7):1478–86.  https://doi.org/10.1177/0363546511398039.CrossRefPubMedGoogle Scholar
  200. 200.
    Gnannt R, Chhabra A, Theodoropoulos JS, Hodler J, Andreisek G. MR imaging of the postoperative knee. J Magn Reson Imaging. 2011;34(5):1007–21.  https://doi.org/10.1002/jmri.22672.CrossRefPubMedGoogle Scholar
  201. 201.
    Kulczycka P, Larbi A, Malghem J, Thienpont E, Vande Berg B, Lecouvet F. Imaging ACL reconstructions and their complications. Diagn Interv Imaging. 2015;96(1):11–9.  https://doi.org/10.1016/j.diii.2014.04.007.CrossRefPubMedGoogle Scholar
  202. 202.
    Naraghi A, White L. MRI evaluation of the postoperative knee: special considerations and pitfalls. Clin Sports Med. 2006;25(4):703–25.  https://doi.org/10.1016/j.csm.2006.06.007.CrossRefPubMedGoogle Scholar
  203. 203.
    Rabuck SJ, Baraga MG, Fu FH. Anterior cruciate ligament healing and advances in imaging. Clin Sports Med. 2013;32(1):13–20.  https://doi.org/10.1016/j.csm.2012.08.003.CrossRefPubMedGoogle Scholar
  204. 204.
    Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link TM, Ma CB, Majumdar S. Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2--initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14.  https://doi.org/10.1148/radiol.10101006.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology. 2006;241(2):407–14.  https://doi.org/10.1148/radiol.2412051750.CrossRefPubMedGoogle Scholar
  206. 206.
    Fleming BC, Vajapeyam S, Connolly SA, Magarian EM, Murray MM. The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech. 2011;44(16):2843–6.  https://doi.org/10.1016/j.jbiomech.2011.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH. Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy. 2004;20(2):122–8.  https://doi.org/10.1016/j.arthro.2003.11.007.CrossRefPubMedGoogle Scholar
  208. 208.
    Konan S, Haddad FS. Femoral fracture following knee ligament reconstruction surgery due to an unpredictable complication of bioabsorbable screw fixation: a case report and review of literature. J Orthop Traumatol. 2010;11(1):51–5.  https://doi.org/10.1007/s10195-009-0079-x.CrossRefPubMedGoogle Scholar
  209. 209.
    Achtnich A, Forkel P, Metzlaff S, Zantop T, Petersen W. Degradation of poly-D-L-lactide (PDLLA) interference screws (Megafix (R)). Arch Orthop Trauma Surg. 2014;134(8):1147–53.  https://doi.org/10.1007/s00402-014-2013-9.CrossRefPubMedGoogle Scholar
  210. 210.
    White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 2002;6(1):5–17.  https://doi.org/10.1055/s-2002-23160.CrossRefPubMedGoogle Scholar
  211. 211.
    Grassi A, Bailey JR, Signorelli C, Carbone G, Tchonang Wakam A, Lucidi GA, Zaffagnini S. Magnetic resonance imaging after anterior cruciate ligament reconstruction: a practical guide. World J Orthop. 2016;7(10):638–49.  https://doi.org/10.5312/wjo.v7.i10.638.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Rahmer J, Bornert P, Dries SP. Assessment of anterior cruciate ligament reconstruction using 3D ultrashort echo-time MR imaging. J Magn Reson Imaging. 2009;29(2):443–8.  https://doi.org/10.1002/jmri.21653.CrossRefPubMedGoogle Scholar
  213. 213.
    Biercevicz AM, Miranda DL, Machan JT, Murray MM, Fleming BC. In situ, noninvasive, T2∗-weighted MRI-derived parameters predict ex vivo structural properties of an anterior cruciate ligament reconstruction or bioenhanced primary repair in a porcine model. Am J Sports Med. 2013;41(3):560–6.  https://doi.org/10.1177/0363546512472978.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Biercevicz AM, Murray MM, Walsh EG, Miranda DL, Machan JT, Fleming BC. T2 ∗ MR relaxometry and ligament volume are associated with the structural properties of the healing ACL. J Orthop Res. 2014;32(4):492–9.  https://doi.org/10.1002/jor.22563.CrossRefPubMedGoogle Scholar
  215. 215.
    Chu CR, Williams AA, West RV, Qian Y, Fu FH, Do BH, Bruno S. Quantitative magnetic resonance imaging UTE-T2∗ mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(8):1847–56.  https://doi.org/10.1177/0363546514532227.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Koff MF, Shah P, Pownder S, Romero B, Williams R, Gilbert S, Maher S, Fortier LA, Rodeo SA, Potter HG. Correlation of meniscal T2∗ with multiphoton microscopy, and change of articular cartilage T2 in an ovine model of meniscal repair. Osteoarthr Cartil. 2013;21(8):1083–91.  https://doi.org/10.1016/j.joca.2013.04.020.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Qian Y, Williams AA, Chu CR, Boada FE. High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T. J Magn Reson Imaging. 2012;35(1):204–10.  https://doi.org/10.1002/jmri.22639.CrossRefPubMedGoogle Scholar
  218. 218.
    Qian Y, Williams AA, Chu CR, Boada FE. Repeatability of ultrashort echo time-based two-component T2∗ measurements on cartilages in human knee at 3 T. Magn Reson Med. 2013;69(6):1564–72.  https://doi.org/10.1002/mrm.24392.CrossRefPubMedGoogle Scholar
  219. 219.
    Williams A, Qian Y, Golla S, Chu CR. UTE-T2 ∗ mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthr Cartil. 2012;20(6):486–94.  https://doi.org/10.1016/j.joca.2012.01.009.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Roberts TP, Schwartz ES. Principles and implementation of diffusion-weighted and diffusion tensor imaging. Pediatr Radiol. 2007;37(8):739–48.  https://doi.org/10.1007/s00247-007-0516-z.CrossRefPubMedGoogle Scholar
  221. 221.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.  https://doi.org/10.1148/radiology.201.3.8939209.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Brander A, Kataja A, Saastamoinen A, Ryymin P, Huhtala H, Ohman J, Soimakallio S, Dastidar P. Diffusion tensor imaging of the brain in a healthy adult population: normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiol. 2010;51(7):800–7.  https://doi.org/10.3109/02841851.2010.495351.CrossRefPubMedGoogle Scholar
  223. 223.
    Chen L, Zhao H, Li J, Quan X, Qing W, Liu W, Liu J. Diffusion tensor imaging map of anterior cruciate ligament contrasted with MRI in healthy adults. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(6):610–6.  https://doi.org/10.3969/j.issn.1672-7347.2013.06.010.CrossRefPubMedGoogle Scholar
  224. 224.
    Yang X, Li M, Chen D, Shi D, Zhou Z, Zhu B, Jiang Q. Diffusion tensor imaging for anatomical and quantitative evaluation of the anterior cruciate ligament and ACL grafts: a preliminary study. J Comput Assist Tomogr. 2014;38(4):489–94.  https://doi.org/10.1097/RCT.0000000000000078.CrossRefPubMedGoogle Scholar
  225. 225.
    de Sa D, Fu FH. Fresh Osteochondral allograft transplantation is an effective salvage strategy for revision of failed cartilage repair: commentary on an article by Tim Wang, MD, et al.: "clinical and MRI outcomes of fresh Osteochondral allograft transplantation after failed cartilage repair surgery in the knee". J Bone Joint Surg Am. 2018;100(22):e145.  https://doi.org/10.2106/JBJS.18.00805.CrossRefPubMedGoogle Scholar
  226. 226.
    Webster KE, Feller JA, Leigh WB, Richmond AK. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641–7.  https://doi.org/10.1177/0363546513517540.CrossRefGoogle Scholar
  227. 227.
    Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med. 2014;42(10):2311–8.  https://doi.org/10.1177/0363546514541935.CrossRefPubMedGoogle Scholar
  228. 228.
    Barber FA, Cowden CH 3rd, Sanders EJ. Revision rates after anterior cruciate ligament reconstruction using bone-patellar tendon-bone allograft or autograft in a population 25 years old and younger. Arthroscopy. 2014;30(4):483–91.  https://doi.org/10.1016/j.arthro.2013.12.022.CrossRefPubMedGoogle Scholar
  229. 229.
    Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I. The long-term followup of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med. 1991;19(3):243–55.  https://doi.org/10.1177/036354659101900307.CrossRefPubMedGoogle Scholar
  230. 230.
    van der List JP, DiFelice GS. Preservation of the anterior cruciate ligament: a treatment algorithm based on tear location and tissue quality. Am J Orthop (Belle Mead NJ). 2016;45(7):E393–405.Google Scholar
  231. 231.
    van der List JP, Mintz DN, DiFelice GS. The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop J Sports Med. 2017;5(6):2325967117709966.  https://doi.org/10.1177/2325967117709966.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 2012;28(5):672–80.  https://doi.org/10.1016/j.arthro.2011.10.008.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M. Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand. 2002;73(3):330–4.  https://doi.org/10.1080/000164702320155356.CrossRefPubMedGoogle Scholar
  234. 234.
    DiFelice GS, Villegas C, Taylor S. Anterior cruciate ligament preservation: early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy. 2015;31(11):2162–71.  https://doi.org/10.1016/j.arthro.2015.08.010.CrossRefPubMedGoogle Scholar
  235. 235.
    Murray MM. Current status and potential of primary ACL repair. Clin Sports Med. 2009;28(1):51–61.  https://doi.org/10.1016/j.csm.2008.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    van der List JP, DiFelice GS. Range of motion and complications following primary repair versus reconstruction of the anterior cruciate ligament. Knee. 2017;24(4):798–807.  https://doi.org/10.1016/j.knee.2017.04.007.CrossRefPubMedGoogle Scholar
  237. 237.
    Nguyen DT, Geel J, Schulze M, Raschke MJ, Woo SL, van Dijk CN, Blankevoort L. Healing of the goat anterior cruciate ligament after a new suture repair technique and bioscaffold treatment. Tissue Eng Part A. 2013;19(19–20):2292–9.  https://doi.org/10.1089/ten.TEA.2012.0535.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Nguyen DT, Ramwadhdoebe TH, van der Hart CP, Blankevoort L, Tak PP, van Dijk CN. Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants. J Orthop Res. 2014;32(2):296–301.PubMedCrossRefGoogle Scholar
  239. 239.
    Kohl S, Evangelopoulos DS, Ahmad SS, Kohlhof H, Herrmann G, Bonel H, Eggli S. A novel technique, dynamic intraligamentary stabilization creates optimal conditions for primary ACL healing: a preliminary biomechanical study. Knee. 2014;21(2):477–80.PubMedCrossRefGoogle Scholar
  240. 240.
    Buchler L, Regli D, Evangelopoulos DS, Bieri K, Ahmad SS, Krismer A, Muller T, Kohl S. Functional recovery following primary ACL repair with dynamic intraligamentary stabilization. Knee. 2016;23(3):549–53.  https://doi.org/10.1016/j.knee.2016.01.012.CrossRefPubMedGoogle Scholar
  241. 241.
    Evangelopoulos DS, Kohl S, Schwienbacher S, Gantenbein B, Exadaktylos A, Ahmad SS. Collagen application reduces complication rates of mid-substance ACL tears treated with dynamic intraligamentary stabilization. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2414–9.PubMedCrossRefGoogle Scholar
  242. 242.
    Kosters C, Herbort M, Schliemann B, Raschke MJ, Lenschow S. Dynamic intraligamentary stabilization of the anterior cruciate ligament. Operative technique and short-term clinical results. Unfallchirurg. 2015;118(4):364–71.  https://doi.org/10.1007/s00113-015-2745-1.CrossRefPubMedGoogle Scholar
  243. 243.
    Kohl S, Evangelopoulos DS, Kohlhof H, Hartel M, Bonel H, Henle P, von Rechenberg B, Eggli S. Anterior crucial ligament rupture: self-healing through dynamic intraligamentary stabilization technique. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):599–605.  https://doi.org/10.1007/s00167-012-1958-x.CrossRefPubMedGoogle Scholar
  244. 244.
    Malahias M-A, Chytas D, Nakamura K, Raoulis V, Yokota M, Nikolaou VS. A narrative review of four different new techniques in primary anterior cruciate ligament repair:“Back to the future” or another trend? Sports Med-Open. 2018;4(1):37.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew Smith
    • 1
  • Frank R. Noyes
    • 1
  1. 1.Cincinnati Sports Medicine and Orthopaedic CenterThe Noyes Knee InstituteCincinnatiUSA

Personalised recommendations