Advertisement

Return to Sport After Cartilage Procedures

  • Taylor M. Southworth
  • Neal B. NaveenEmail author
  • Tracy M. Tauro
  • Ian J. Dempsey
  • Jorge Chahla
  • Brian J. Cole
Chapter

Abstract

Focal chondral defects in the knee are prevalent in athletes and can occur from a variety of etiologies, including trauma, osteochondritis dissecans, and early degenerative changes. As these lesions are often symptomatic and debilitating, a variety of cartilage restoration procedures are available for treatment. While most patient goals include returning to basic activities of daily living, athletes are unique in that they also strive to return to sport at their preinjury level of play or higher. Cartilage restoration procedures as a whole have reported up to 79% return to sport with specific procedures showing up to 93% return to sport. However, not all athletes return at their preinjury level. It is extremely important to manage return to sport expectations, expected timeline for return to sport, and the likelihood of returning to their preinjury level of play. Evidence-based treatments are mandatory to help patients attain their recovery goals without compromising the knee.

Keywords

Focal chondral defects Cartilage injury Return to sport Cartilage restoration Cartilage repair Knee 

References

  1. 1.
    Montgomery SR, Foster BD, Ngo SS, et al. Trends in the surgical treatment of articular cartilage defects of the knee in the United States. Knee Surg Sport Traumatol Arthrosc. 2014;22(9):2070–5.  https://doi.org/10.1007/s00167-013-2614-9.CrossRefGoogle Scholar
  2. 2.
    McCormick F, Harris JD, Abrams GD, et al. Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthrosc J Arthrosc Relat Surg. 2014;30(2):222–6.  https://doi.org/10.1016/j.arthro.2013.11.001.CrossRefGoogle Scholar
  3. 3.
    Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.  https://doi.org/10.1016/j.knee.2007.02.001.CrossRefPubMedGoogle Scholar
  4. 4.
    Curl WW, Krome J, Gordon ES, et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthrosc J Arthrosc Relat Surg. 1997;13(4):456–60.. http://www.ncbi.nlm.nih.gov/pubmed/9276052CrossRefGoogle Scholar
  5. 5.
    Provencher MT, Chahla J, Cinque ME, et al. Symptomatic focal knee chondral injuries in national football league combine players are associated with poorer performance and less volume of play. Arthrosc J Arthrosc Relat Surg. 2018;34(3):671–7.  https://doi.org/10.1016/j.arthro.2017.08.300.CrossRefGoogle Scholar
  6. 6.
    Southworth TM, Naveen NB, Nwachukwu BU, Cole BJ, Frank RM. Orthobiologics for focal articular cartilage defects. Clin Sports Med. 2019;38(1):109–22.  https://doi.org/10.1016/j.csm.2018.09.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Cotter EJ, Wang KC, Yanke AB, Chubinskaya S. Bone marrow aspirate concentrate for cartilage defects of the knee: from bench to bedside evidence. Cartilage. 2018;9(2):161–70.  https://doi.org/10.1177/1947603517741169.CrossRefPubMedGoogle Scholar
  8. 8.
    Roos H. Are there long-term sequelae from soccer? Clin Sports Med. 1998;17(4):819–31, viii. http://www.ncbi.nlm.nih.gov/pubmed/9922905CrossRefGoogle Scholar
  9. 9.
    Elleuch MH, Guermazi M, Mezghanni M, et al. Knee osteoarthritis in 50 former top-level soccer players: a comparative study. Ann Readapt Med Phys. 2008;51(3):174–8.  https://doi.org/10.1016/j.annrmp.2008.01.003.CrossRefPubMedGoogle Scholar
  10. 10.
    Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010;42(10):1795–801.  https://doi.org/10.1249/MSS.0b013e3181d9eea0.CrossRefPubMedGoogle Scholar
  11. 11.
    Walczak BE, McCulloch PC, Kang RW, Zelazny A, Tedeschi F, Cole BJ. Abnormal findings on knee magnetic resonance imaging in asymptomatic NBA players. J Knee Surg. 2008;21(1):27–33.. http://www.ncbi.nlm.nih.gov/pubmed/18300668CrossRefGoogle Scholar
  12. 12.
    Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sport Med. 1995;23(6):694–701.CrossRefGoogle Scholar
  13. 13.
    Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sport Med. 2003;31(4):601–5.  https://doi.org/10.1177/03635465030310042101.CrossRefGoogle Scholar
  14. 14.
    Prakash D, Learmonth D. Natural progression of osteochondral defect in the femoral condyle. Knee. 2002;9(1):7–10.  https://doi.org/10.1016/S0968-0160(01)00133-8.CrossRefPubMedGoogle Scholar
  15. 15.
    Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.. http://www.ncbi.nlm.nih.gov/pubmed/11033593CrossRefGoogle Scholar
  16. 16.
    Kon E, Filardo G, Berruto M, et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med. 2011;39(12):2549–57.  https://doi.org/10.1177/0363546511420688.CrossRefPubMedGoogle Scholar
  17. 17.
    Buckwalter JA. Evaluating methods of restoring cartilaginous articular surfaces. Clin Orthop Relat Res. 1999;367(Suppl):S224–38.. http://www.ncbi.nlm.nih.gov/pubmed/10546649CrossRefGoogle Scholar
  18. 18.
    Buckwalter J, Mankin H. Articular cartilage, II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Jt Surg Am. 1997;79:612–32.CrossRefGoogle Scholar
  19. 19.
    Engström B, Forssblad M, Johansson C, Törnkvist H. Does a major knee injury definitely sideline an elite soccer player? Am J Sport Med. 1990;18(1):101–5.  https://doi.org/10.1177/036354659001800118.CrossRefGoogle Scholar
  20. 20.
    Drawer S, Fuller CW. Propensity for osteoarthritis and lower limb joint pain in retired professional soccer players. Br J Sports Med. 2001;35(6):402–8.. http://www.ncbi.nlm.nih.gov/pubmed/11726474CrossRefGoogle Scholar
  21. 21.
    Homminga G, Bulstra S, Bouwmeester P, van der Linden A. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br. 1990;72(6):1003–7.. http://www.ncbi.nlm.nih.gov/pubmed/2246280CrossRefGoogle Scholar
  22. 22.
    Jensen LJ, Bach KL. Periosteal transplantation in the treatment of osteochondritis dissecans. Scand J Med Sci Sports. 2007;2(1):32–6.  https://doi.org/10.1111/j.1600-0838.1992.tb00315.x.CrossRefGoogle Scholar
  23. 23.
    Lawrence JS, Bremner JM, Bier F. Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Ann Rheum Dis. 1966;25(1):1–24.. http://www.ncbi.nlm.nih.gov/pubmed/5905334CrossRefGoogle Scholar
  24. 24.
    Mithoefer K, Gill TJ, Cole BJ, Williams RJ, Mandelbaum BR. Clinical outcome and return to competition after microfracture in the athlete’s knee: an evidence-based systematic review. Cartilage. 2010;1(2):113–20.  https://doi.org/10.1177/1947603510366576.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W. Chondral delamination of the knee in soccer players. Am J Sport Med. 1996;24(5):634–9.  https://doi.org/10.1177/036354659602400512.CrossRefGoogle Scholar
  26. 26.
    Della Villa S, Kon E, Filardo G, et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med. 2010;38(1):68–77.  https://doi.org/10.1177/0363546509348490.CrossRefPubMedGoogle Scholar
  27. 27.
    Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand. 1996;67(2):165–8.  https://doi.org/10.3109/17453679608994664.CrossRefPubMedGoogle Scholar
  28. 28.
    Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91(7):1778–90.  https://doi.org/10.1177/036354659602400302.CrossRefPubMedGoogle Scholar
  29. 29.
    Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in national football league athletes. Am J Sports Med. 2015;43(3):663–8.  https://doi.org/10.1177/0363546514562752.CrossRefPubMedGoogle Scholar
  30. 30.
    Redondo ML, Naveen NB, Liu JN, Tauro TM, Southworth TM, Cole BJ, et al. Sports Med Arthrosc Rev. 2018;26(4):e23–30.  https://doi.org/10.1097/JSA.0000000000000226.CrossRefPubMedGoogle Scholar
  31. 31.
    Fortier LA, Cole BJ, McIlwraith CW. Science and animal models of marrow stimulation for cartilage repair. J Knee Surg. 2012;25(1):3–8.. http://www.ncbi.nlm.nih.gov/pubmed/22624241CrossRefGoogle Scholar
  32. 32.
    Bogunovic L, Wetters NG, Jain A, Cole BJ, Yanke AB. In vitro analysis of micronized cartilage stability in the knee: effect of fibrin level, defect size, and defect location. Arthroscopy. 2019;35(4):1212–8.  https://doi.org/10.1016/j.arthro.2018.11.017.CrossRefPubMedGoogle Scholar
  33. 33.
    Yanke AB, Cole BJ. Microfracture: dead or the future? Orthopedics. 2014;37(12):798–800.  https://doi.org/10.3928/01477447-20141124-02.CrossRefPubMedGoogle Scholar
  34. 34.
    Mithoefer K, Williams RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med. 2006;34(9):1413–8.  https://doi.org/10.1177/0363546506288240.CrossRefPubMedGoogle Scholar
  35. 35.
    Gudas R, Stankevicius E, Monastyreckiene E, et al. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sport Traumatol Arthrosc. 2006;14(9):834–42.CrossRefGoogle Scholar
  36. 36.
    Gill T. The treatment of articular cartilage defects using microfracture and debridement. Am J Knee Surg. 2000;13:33–40.PubMedGoogle Scholar
  37. 37.
    Mithoefer K, Williams RJ, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005;87(9):1911–20.  https://doi.org/10.2106/JBJS.D.02846.CrossRefPubMedGoogle Scholar
  38. 38.
    Blevins FT, Steadman JR, Rodrigo JJ, Silliman J. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics. 1998;21(7):761–7.. http://www.ncbi.nlm.nih.gov/pubmed/9672913PubMedGoogle Scholar
  39. 39.
    Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004;86-A(3):455–64.. http://www.ncbi.nlm.nih.gov/pubmed/14996869CrossRefGoogle Scholar
  40. 40.
    Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3186–96.  https://doi.org/10.1007/s00167-016-4262-3.CrossRefPubMedGoogle Scholar
  41. 41.
    Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902–8.  https://doi.org/10.1177/0363546508330137.CrossRefPubMedGoogle Scholar
  42. 42.
    Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med. 2009;37(1_suppl):167S–76S.  https://doi.org/10.1177/0363546509351650.CrossRefPubMedGoogle Scholar
  43. 43.
    Niemeyer P, Porichis S, Salzmann G, Südkamp NP. What patients expect about autologous chondrocyte implantation (ACI) for treatment of cartilage defects at the knee joint. Cartilage. 2012;3(1):13–9.  https://doi.org/10.1177/1947603511415840.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Niemeyer P, Andereya S, Angele P, et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Knee. 2016;23:426–35.  https://doi.org/10.1055/s-0032-1328207.CrossRefPubMedGoogle Scholar
  45. 45.
    Pestka JM, Feucht MJ, Porichis S, Bode G, Südkamp NP, Niemeyer P. Return to sports activity and work after autologous chondrocyte implantation of the knee: which factors influence outcomes? Am J Sports Med. 2016;44(2):370–7.  https://doi.org/10.1177/0363546515614578.CrossRefPubMedGoogle Scholar
  46. 46.
    Mithoefer K, Peterson L, Saris DBF, Mandelbaum BR. Evolution and current role of autologous chondrocyte implantation for treatment of articular cartilage defects in the football (soccer) player. Cartilage. 2012;3(1 Suppl):31S–6S.  https://doi.org/10.1177/1947603511406532.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mithöfer K, Peterson L, Mandelbaum BR, Minas T. Articular cartilage repair in soccer players with autologous chondrocyte transplantation: functional outcome and return to competition. Am J Sports Med. 2005;33(11):1639–46.  https://doi.org/10.1177/0363546505275647.CrossRefPubMedGoogle Scholar
  48. 48.
    Zaffagnini S, Vannini F, Di Martino A, et al. Low rate of return to pre-injury sport level in athletes after cartilage surgery: a 10-year follow-up study. Knee Surg Sport Traumatol Arthrosc. 2018.  https://doi.org/10.1007/s00167-018-5255-1.CrossRefGoogle Scholar
  49. 49.
    Stone AV, Christian DR, Redondo ML, Yanke AB, Cole BJ. Osteochondral allograft transplantation and osteochondral autograft transfer. Oper Tech Sports Med. 2018;26(3):1–6.CrossRefGoogle Scholar
  50. 50.
    Minzlaff P, Feucht MJ, Saier T, et al. Can young and active patients participate in sports after osteochondral autologous transfer combined with valgus high tibial osteotomy? Knee Surg Sport Traumatol Arthrosc. 2016;24(5):1594–600.  https://doi.org/10.1007/s00167-014-3447-x.CrossRefGoogle Scholar
  51. 51.
    Gudas R, Kalesinskas RJ, Kimtys V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21(9):1066–75.  https://doi.org/10.1016/j.arthro.2005.06.018.CrossRefPubMedGoogle Scholar
  52. 52.
    Gudas R, Gudaite A, Pocius A, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40(11):2499–508.  https://doi.org/10.1177/0363546512458763.CrossRefPubMedGoogle Scholar
  53. 53.
    Saltzman BM, Christian DR, Redondo ML, Cole BJ. Preserving the articulating surface of the knee. Amsterdam: Elsevier Inc.; 2019.  https://doi.org/10.1016/B978-0-323-55140-3.00009-6.CrossRefGoogle Scholar
  54. 54.
    De Caro F, Bisicchia S, Amendola A, Ding L. Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature. Arthroscopy. 2015;31(4):757–65.  https://doi.org/10.1016/j.arthro.2014.11.025.CrossRefPubMedGoogle Scholar
  55. 55.
    Familiari F, Cinque ME, Chahla J, et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med. 2018;46(14):3541–9.  https://doi.org/10.1177/0363546517732531.CrossRefPubMedGoogle Scholar
  56. 56.
    Chahla J, Sweet MC, Okoroha KR, et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review. Am J Sports Med. 2018:363546518814236.  https://doi.org/10.1177/0363546518814236.CrossRefGoogle Scholar
  57. 57.
    Balazs GC, Wang D, Burge AJ, Sinatro AL, Wong AC, Williams RJ. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop J Sports Med. 2018;6(7):1–7.  https://doi.org/10.1177/2325967118786941.CrossRefGoogle Scholar
  58. 58.
    Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2017;45(7):1608–14.  https://doi.org/10.1177/0363546517694857.CrossRefPubMedGoogle Scholar
  59. 59.
    Krych AJ, Robertson CM, Williams RJ. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2012;40(5):1053–9.  https://doi.org/10.1177/0363546511435780.CrossRefPubMedGoogle Scholar
  60. 60.
    Campbell AB, Pineda M, Harris JD, Flanigan DC. Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy. 2016;32(4):651–68.e1.  https://doi.org/10.1016/j.arthro.2015.08.028.CrossRefGoogle Scholar
  61. 61.
    Mithoefer K, Della VS. Return to sports after articular cartilage repair in the football (soccer) player. Cartilage. 2012;3(1 SUPPL):57S–62S.  https://doi.org/10.1177/1947603511410419.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Makhni EC, Meyer MA, Saltzman BM, Cole BJ. Comprehensiveness of outcome reporting in studies of articular cartilage defects of the knee. Arthrosc J Arthrosc Relat Surg. 2016;32(10):2133–9.  https://doi.org/10.1016/j.arthro.2016.04.009.CrossRefGoogle Scholar
  63. 63.
    Mithoefer K, Williams RJ, Warren RF, et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. surgical technique. J Bone Joint Surg Am. 2006;88(Suppl 1):294–304.  https://doi.org/10.2106/JBJS.F.00292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Taylor M. Southworth
    • 1
  • Neal B. Naveen
    • 1
    Email author
  • Tracy M. Tauro
    • 1
  • Ian J. Dempsey
    • 1
  • Jorge Chahla
    • 1
  • Brian J. Cole
    • 1
  1. 1.Department of Orthopaedics SurgeryRush University Medical CenterChicagoUSA

Personalised recommendations