Advertisement

Return to Sport After Patellofemoral Realignment and Stabilization Procedures

  • Frank R. Noyes
  • Sue Barber-WestinEmail author
Chapter

Abstract

This chapter summarizes data in the current literature regarding return to sports (RTS) after patellofemoral realignment surgery from 52 studies encompassing 1892 patients. There were 1408 patients in 36 studies that underwent medial patellofemoral ligament (MPFL) reconstruction or repair and 484 patients in 16 studies that underwent a variety of patellar proximal and/or distal realignment procedures that did not involve MPFL reconstruction or repair (such as Fulkerson and Elmslie-Trillat). Following MPFL reconstruction, a mean of 70% of patients returned to preinjury sports activity levels, a mean of 83% returned to any sport, and the approximate mean postoperative Tegner score was 5.2 points. After other proximal/distal procedures, the mean values for return to preinjury sports (provided in only 5 studies) ranged from 22% to 97% and the mean postoperative Tegner score was 4.1 points. The mean time patients were usually allowed to RTS was provided in 28 studies and varied from 3 to 9 months postoperatively. Almost no objective criteria were provided to determine when patients could be safely released to either sports-specific training or unrestricted athletic activities. The failure rates were <10% in the majority of studies. The Cincinnati Sports Medicine and Orthopedic Center postoperative rehabilitation program and return to sport criteria are provided.

Keywords

Patellofemoral surgery and sports Proximal-distal realignment MPFL reconstruction Patellofemoral rehabilitation 

References

  1. 1.
    Noyes FR, Barber-Westin SD. Operative options for extensor mechanism malalignment and patellar dislocation. In: Noyes FR, Barber-Westin SD, editors. Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia, PA: Elsevier; 2017. p. 970–1013.  https://doi.org/10.1016/b978-0-323-32903-3.00035-4.CrossRefGoogle Scholar
  2. 2.
    Waterman BR, Belmont PJ Jr, Owens BD. Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg. 2012;25(1):51–7.CrossRefGoogle Scholar
  3. 3.
    Palmu S, Kallio PE, Donell ST, Helenius I, Nietosvaara Y. Acute patellar dislocation in children and adolescents: a randomized clinical trial. J Bone Joint Surg Am. 2008;90(3):463–70.CrossRefGoogle Scholar
  4. 4.
    Hennrikus W, Pylawka T. Patellofemoral instability in skeletally immature athletes. Instr Course Lect. 2013;62:445–53.PubMedGoogle Scholar
  5. 5.
    Sillanpaa P, Mattila VM, Iivonen T, Visuri T, Pihlajamaki H. Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc. 2008;40(4):606–11.CrossRefGoogle Scholar
  6. 6.
    Smith TO, Davies L, Chester R, Clark A, Donell ST. Clinical outcomes of rehabilitation for patients following lateral patellar dislocation: a systematic review. Physiotherapy. 2010;96(4):269–81.  https://doi.org/10.1016/j.physio.2010.02.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Maquet P. Valgus osteotomy for osteoarthritis of the knee. Clin Orthop Relat Res. 1976;120:143–8.Google Scholar
  8. 8.
    Trillat A, Dejour H, Couette A. Diagnosis and treatment of recurrent dislocations of the Patella. Rev Chir Orthop Reparatrice Appar Mot. 1964;50:813–24.PubMedGoogle Scholar
  9. 9.
    Fulkerson JP, Becker GJ, Meaney JA, Miranda M, Folcik MA. Anteromedial tibial tubercle transfer without bone graft. Am J Sports Med. 1990;18(5):490–6; discussion 496-497CrossRefGoogle Scholar
  10. 10.
    Sanchis-Alfonso V. Guidelines for medial patellofemoral ligament reconstruction in chronic lateral patellar instability. J Am Acad Orthop Surg. 2014;22(3):175–82.  https://doi.org/10.5435/JAAOS-22-03-175.CrossRefPubMedGoogle Scholar
  11. 11.
    Matic GT, Magnussen RA, Kolovich GP, Flanigan DC. Return to activity after medial patellofemoral ligament repair or reconstruction. Arthroscopy. 2014;30(8):1018–25.  https://doi.org/10.1016/j.arthro.2014.02.044.CrossRefPubMedGoogle Scholar
  12. 12.
    Buckens CF, Saris DB. Reconstruction of the medial patellofemoral ligament for treatment of patellofemoral instability: a systematic review. Am J Sports Med. 2010;38(1):181–8.  https://doi.org/10.1177/0363546509353132.CrossRefPubMedGoogle Scholar
  13. 13.
    Bicos J, Fulkerson JP, Amis A. Current concepts review: the medial patellofemoral ligament. Am J Sports Med. 2007;35(3):484–92.  https://doi.org/10.1177/0363546507299237.CrossRefPubMedGoogle Scholar
  14. 14.
    Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc. 2007;15(2):48–56.CrossRefGoogle Scholar
  15. 15.
    Feller JA, Amis AA, Andrish JT, Arendt EA, Erasmus PJ, Powers CM. Surgical biomechanics of the patellofemoral joint. Arthroscopy. 2007;23(5):542–53.CrossRefGoogle Scholar
  16. 16.
    Mihalko WM, Boachie-Adjei Y, Spang JT, Fulkerson JP, Arendt EA, Saleh KJ. Controversies and techniques in the surgical management of patellofemoral arthritis. Instr Course Lect. 2008;57:365–80.PubMedGoogle Scholar
  17. 17.
    Smith TO, Walker J, Russell N. Outcomes of medial patellofemoral ligament reconstruction for patellar instability: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2007;15(11):1301–14.CrossRefGoogle Scholar
  18. 18.
    Fisher B, Nyland J, Brand E, Curtin B. Medial patellofemoral ligament reconstruction for recurrent patellar dislocation: a systematic review including rehabilitation and return-to-sports efficacy. Arthroscopy. 2010;26(10):1384–94.  https://doi.org/10.1016/j.arthro.2010.04.005.CrossRefPubMedGoogle Scholar
  19. 19.
    Singhal R, Rogers S, Charalambous CP. Double-bundle medial patellofemoral ligament reconstruction with hamstring tendon autograft and mediolateral patellar tunnel fixation: a meta-analysis of outcomes and complications. Bone Joint J. 2013;95-B(7):900–5.  https://doi.org/10.1302/0301-620X.95B7.31417.CrossRefPubMedGoogle Scholar
  20. 20.
    Vavken P, Wimmer MD, Camathias C, Quidde J, Valderrabano V, Pagenstert G. Treating patella instability in skeletally immature patients. Arthroscopy. 2013;29(8):1410–22.  https://doi.org/10.1016/j.arthro.2013.03.075.CrossRefPubMedGoogle Scholar
  21. 21.
    Zaman S, White A, Shi WJ, Freedman KB, Dodson CC. Return-to-play guidelines after medial patellofemoral ligament surgery for recurrent patellar instability: a systematic review. Am J Sports Med. 2018;46(10):2530–9.  https://doi.org/10.1177/0363546517713663.CrossRefPubMedGoogle Scholar
  22. 22.
    Menetrey J, Putman S, Gard S. Return to sport after patellar dislocation or following surgery for patellofemoral instability. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2320–6.  https://doi.org/10.1007/s00167-014-3172-5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carnesecchi O, Philippot R, Boyer B, Farizon F, Edouard P. Recovery of gait pattern after medial patellofemoral ligament reconstruction for objective patellar instability. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):123–8.  https://doi.org/10.1007/s00167-014-3347-0.CrossRefPubMedGoogle Scholar
  24. 24.
    Nelitz M, Dreyhaupt J, Reichel H, Woelfle J, Lippacher S. Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents with open growth plates: surgical technique and clinical outcome. Am J Sports Med. 2013;41(1):58–63.  https://doi.org/10.1177/0363546512463683.CrossRefPubMedGoogle Scholar
  25. 25.
    Drez D Jr, Edwards TB, Williams CS. Results of medial patellofemoral ligament reconstruction in the treatment of patellar dislocation. Arthroscopy. 2001;17(3):298–306.CrossRefGoogle Scholar
  26. 26.
    Nelitz M, Dreyhaupt J, Lippacher S. Combined trochleoplasty and medial patellofemoral ligament reconstruction for recurrent patellar dislocations in severe trochlear dysplasia: a minimum 2-year follow-up study. Am J Sports Med. 2013;41(5):1005–12.  https://doi.org/10.1177/0363546513478579.CrossRefPubMedGoogle Scholar
  27. 27.
    Panni AS, Alam M, Cerciello S, Vasso M, Maffulli N. Medial patellofemoral ligament reconstruction with a divergent patellar transverse 2-tunnel technique. Am J Sports Med. 2011;39(12):2647–55.  https://doi.org/10.1177/0363546511420079.CrossRefPubMedGoogle Scholar
  28. 28.
    Lippacher S, Dreyhaupt J, Williams SR, Reichel H, Nelitz M. Reconstruction of the medial patellofemoral ligament: clinical outcomes and return to sports. Am J Sports Med. 2014;42(7):1661–8.  https://doi.org/10.1177/0363546514529640.CrossRefPubMedGoogle Scholar
  29. 29.
    Camp CL, Krych AJ, Dahm DL, Levy BA, Stuart MJ. Medial patellofemoral ligament repair for recurrent patellar dislocation. Am J Sports Med. 2010;38(11):2248–54.  https://doi.org/10.1177/0363546510376230.CrossRefPubMedGoogle Scholar
  30. 30.
    Ahmad CS, Stein BE, Matuz D, Henry JH. Immediate surgical repair of the medial patellar stabilizers for acute patellar dislocation. A review of eight cases. Am J Sports Med. 2000;28(6):804–10.CrossRefGoogle Scholar
  31. 31.
    Ronga M, Oliva F, Longo UG, Testa V, Capasso G, Maffulli N. Isolated medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med. 2009;37(9):1735–42.  https://doi.org/10.1177/0363546509333482.CrossRefPubMedGoogle Scholar
  32. 32.
    Mariani PP, Liguori L, Cerullo G, Iannella G, Floris L. Arthroscopic patellar reinsertion of the MPFL in acute patellar dislocations. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):628–33.  https://doi.org/10.1007/s00167-010-1315-x.CrossRefPubMedGoogle Scholar
  33. 33.
    Feller JA, Richmond AK, Wasiak J. Medial patellofemoral ligament reconstruction as an isolated or combined procedure for recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2470–6.  https://doi.org/10.1007/s00167-014-3132-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Wagner D, Pfalzer F, Hingelbaum S, Huth J, Mauch F, Bauer G. The influence of risk factors on clinical outcomes following anatomical medial patellofemoral ligament (MPFL) reconstruction using the gracilis tendon. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):318–24.  https://doi.org/10.1007/s00167-012-2015-5.CrossRefPubMedGoogle Scholar
  35. 35.
    Ambrozic B, Novak S. The influence of medial patellofemoral ligament reconstruction on clinical results and sports activity level. Phys Sportsmed. 2016;44(2):133–40.  https://doi.org/10.1080/00913847.2016.1148561.CrossRefPubMedGoogle Scholar
  36. 36.
    Howells NR, Barnett AJ, Ahearn N, Ansari A, Eldridge JD. Medial patellofemoral ligament reconstruction: a prospective outcome assessment of a large single centre series. J Bone Joint Surg. 2012;94(9):1202–8.  https://doi.org/10.1302/0301-620X.94B9.28738.CrossRefGoogle Scholar
  37. 37.
    Hopper GP, Leach WJ, Rooney BP, Walker CR, Blyth MJ. Does degree of trochlear dysplasia and position of femoral tunnel influence outcome after medial patellofemoral ligament reconstruction? Am J Sports Med. 2014;42(3):716–22.  https://doi.org/10.1177/0363546513518413.CrossRefPubMedGoogle Scholar
  38. 38.
    Tompkins M, Kuenze CM, Diduch DR, Miller MD, Milewski MD, Hart JP. Clinical and functional outcomes following primary repair versus reconstruction of the medial patellofemoral ligament for recurrent patellar instability. J Sports Med (Hindawi Publ Corp). 2014;2014:702358.  https://doi.org/10.1155/2014/702358.CrossRefGoogle Scholar
  39. 39.
    Lim AK, Chang HC, Hui JH. Recurrent patellar dislocation: reappraising our approach to surgery. Ann Acad Med Singap. 2008;37(4):320–3.PubMedGoogle Scholar
  40. 40.
    Xie G, Zhao J, Huangfu X, He Y. Medial patellofemoral ligament reconstruction using semitendinosus tendons: polyester suture augmentation versus nonaugmentation. Am J Sports Med. 2012;40(6):1365–74.  https://doi.org/10.1177/0363546512441324.CrossRefPubMedGoogle Scholar
  41. 41.
    Blond L, Haugegaard M. Combined arthroscopic deepening trochleoplasty and reconstruction of the medial patellofemoral ligament for patients with recurrent patella dislocation and trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2484–90.  https://doi.org/10.1007/s00167-013-2422-2.CrossRefPubMedGoogle Scholar
  42. 42.
    Banke IJ, Kohn LM, Meidinger G, Otto A, Hensler D, Beitzel K, Imhoff AB, Schottle PB. Combined trochleoplasty and MPFL reconstruction for treatment of chronic patellofemoral instability: a prospective minimum 2-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2014;22(11):2591–8.  https://doi.org/10.1007/s00167-013-2603-z.CrossRefPubMedGoogle Scholar
  43. 43.
    Li J, Li Y, Wei J, Wang J, Gao S, Shen Y. A simple technique for reconstruction of medial patellofemoral ligament with bone-fascia tunnel fixation at the medial margin of the patella: a 6-year-minimum follow-up study. J Orthop Surg Res. 2014;9:66.  https://doi.org/10.1186/s13018-014-0066-7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Berruto M, Ferrua P, Uboldi F, Usellini E, Gala L, Tassi A, Marelli B. Medial patellofemoral ligament reconstruction with bioactive synthetic ligament is an option. A 3-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2419–25.  https://doi.org/10.1007/s00167-014-2970-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Calanna F, Pulici L, Carimati G, Quaglia A, Volpi P. Medial patello-femoral ligament (MPFL) reconstruction using suture anchors fixation: preliminary results. Muscles Ligaments Tendons J. 2016;6(1):64–70.  https://doi.org/10.11138/mltj/2016.6.1.064.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhao J, Huangfu X, He Y. The role of medial retinaculum plication versus medial patellofemoral ligament reconstruction in combined procedures for recurrent patellar instability in adults. Am J Sports Med. 2012;40(6):1355–64.  https://doi.org/10.1177/0363546512439193.CrossRefPubMedGoogle Scholar
  47. 47.
    Ahmad CS, Brown GD, Stein BS. The docking technique for medial patellofemoral ligament reconstruction: surgical technique and clinical outcome. Am J Sports Med. 2009;37(10):2021–7.  https://doi.org/10.1177/0363546509336261.CrossRefPubMedGoogle Scholar
  48. 48.
    Csintalan RP, Latt LD, Fornalski S, Raiszadeh K, Inacio MC, Fithian DC. Medial patellofemoral ligament (MPFL) reconstruction for the treatment of patellofemoral instability. J Knee Surg. 2014;27(2):139–46.  https://doi.org/10.1055/s-0033-1360652.CrossRefPubMedGoogle Scholar
  49. 49.
    Becher C, Kley K, Lobenhoffer P, Ezechieli M, Smith T, Ostermeier S. Dynamic versus static reconstruction of the medial patellofemoral ligament for recurrent lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2452–7.  https://doi.org/10.1007/s00167-014-3020-7.CrossRefPubMedGoogle Scholar
  50. 50.
    Steiner TM, Torga-Spak R, Teitge RA. Medial patellofemoral ligament reconstruction in patients with lateral patellar instability and trochlear dysplasia. Am J Sports Med. 2006;34(8):1254–61.CrossRefGoogle Scholar
  51. 51.
    Hinterwimmer S, Imhoff AB, Minzlaff P, Saier T, Rosenstiel N, Hawe W, Feucht MJ. Anatomical two-bundle medial patellofemoral ligament reconstruction with hardware-free patellar graft fixation: technical note and preliminary results. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):2147–54.  https://doi.org/10.1007/s00167-013-2498-8.CrossRefPubMedGoogle Scholar
  52. 52.
    Ma LF, Wang F, Chen BC, Wang CH, Zhou JW, Wang HY. Medial retinaculum plasty versus medial patellofemoral ligament reconstruction for recurrent patellar instability in adults: a randomized controlled trial. Arthroscopy. 2013;29(5):891–7.  https://doi.org/10.1016/j.arthro.2013.01.030.CrossRefPubMedGoogle Scholar
  53. 53.
    Song SY, Kim IS, Chang HG, Shin JH, Kim HJ, Seo YJ. Anatomic medial patellofemoral ligament reconstruction using patellar suture anchor fixation for recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2431–7.  https://doi.org/10.1007/s00167-013-2730-6.CrossRefPubMedGoogle Scholar
  54. 54.
    Kohn LM, Meidinger G, Beitzel K, Banke IJ, Hensler D, Imhoff AB, Schottle PB. Isolated and combined medial patellofemoral ligament reconstruction in revision surgery for patellofemoral instability: a prospective study. Am J Sports Med. 2013;41(9):2128–35.  https://doi.org/10.1177/0363546513498572.CrossRefPubMedGoogle Scholar
  55. 55.
    Suganuma J, Mochizuki R, Sugiki T, Inoue Y, Kitamura K, Akutsu S, Ono H. Reconstruction of the medial patellofemoral ligament using a synthetic graft with arthroscopic control of patellofemoral congruence. Arthroscopy. 2016;32(11):2259–68.  https://doi.org/10.1016/j.arthro.2016.02.004.CrossRefPubMedGoogle Scholar
  56. 56.
    Matthews JJ, Schranz P. Reconstruction of the medial patellofemoral ligament using a longitudinal patellar tunnel technique. Int Orthop. 2010;34(8):1321–5.  https://doi.org/10.1007/s00264-009-0918-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Christiansen SE, Jacobsen BW, Lund B, Lind M. Reconstruction of the medial patellofemoral ligament with gracilis tendon autograft in transverse patellar drill holes. Arthroscopy. 2008;24(1):82–7.CrossRefGoogle Scholar
  58. 58.
    Sillanpaa P, Mattila VM, Visuri T, Maenpaa H, Pihlajamaki H. Ligament reconstruction versus distal realignment for patellar dislocation. Clin Orthop Relat Res. 2008;466(6):1475–84.  https://doi.org/10.1007/s11999-008-0207-6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Barber FA, McGarry JE. Elmslie-Trillat procedure for the treatment of recurrent patellar instability. Arthroscopy. 2008;24(1):77–81.CrossRefGoogle Scholar
  60. 60.
    Berruto M, Uboldi FM, Ferrua P, Vergottini G, Manunta A. Surgical treatment of objective patellar instability: long-term results. Joints. 2018;6(1):33–6.  https://doi.org/10.1055/s-0038-1636949.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Carney JR, Mologne TS, Muldoon M, Cox JS. Long-term evaluation of the Roux-Elmslie-Trillat procedure for patellar instability: a 26-year follow-up. Am J Sports Med. 2005;33(8):1220–3.  https://doi.org/10.1177/0363546504272686.CrossRefPubMedGoogle Scholar
  62. 62.
    Endres S, Wilke A. A 10 year follow-up study after roux-elmslie-Trillat treatment for cases of patellar instability. BMC Musculoskelet Disord. 2011;12:48.  https://doi.org/10.1186/1471-2474-12-48.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Karataglis D, Green MA, Learmonth DJ. Functional outcome following modified elmslie-Trillat procedure. Knee. 2006;13(6):464–8.  https://doi.org/10.1016/j.knee.2006.08.004.CrossRefPubMedGoogle Scholar
  64. 64.
    Kraus T, Lidder S, Svehlik M, Rippel K, Schneider F, Eberl R, Linhart W. Patella re-alignment in children with a modified Grammont technique. Acta Orthop. 2012;83(5):504–10.  https://doi.org/10.3109/17453674.2012.736168.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kreuz PC, Peterson L, van der Werf-Grohmann N, Vohrer M, Schwering L. Clinical and electromyographic results of proximal and distal realignment procedures in young patients with recurrent patellar dislocations. Am J Sports Med. 2013;41(7):1621–8.  https://doi.org/10.1177/0363546513488869.CrossRefPubMedGoogle Scholar
  66. 66.
    Liu JN, Wu HH, Garcia GH, Kalbian IL, Strickland SM, Shubin Stein BE. Return to sports after tibial tubercle osteotomy for patellofemoral pain and osteoarthritis. Arthroscopy. 2018;34(4):1022–9.  https://doi.org/10.1016/j.arthro.2017.09.021.CrossRefPubMedGoogle Scholar
  67. 67.
    Luhmann SJ, O’Donnell JC, Fuhrhop S. Outcomes after patellar realignment surgery for recurrent patellar instability dislocations: a minimum 3-year follow-up study of children and adolescents. J Pediatr Orthop. 2011;31(1):65–71.  https://doi.org/10.1097/BPO.0b013e318202c42d.CrossRefPubMedGoogle Scholar
  68. 68.
    Marcacci M, Zaffagnini S, Lo Presti M, Vascellari A, Iacono F, Russo A. Treatment of chronic patellar dislocation with a modified Elmslie-Trillat procedure. Arch Orthop Trauma Surg. 2004;124(4):250–7.  https://doi.org/10.1007/s00402-003-0511-2.CrossRefPubMedGoogle Scholar
  69. 69.
    Rillmann P, Dutly A, Kieser C, Berbig R. Modified elmslie-Trillat procedure for instability of the patella. Knee Surg Sports Traumatol Arthrosc. 1998;6(1):31–5.  https://doi.org/10.1007/s001670050069.CrossRefPubMedGoogle Scholar
  70. 70.
    Sillanpaa PJ, Mattila VM, Maenpaa H, Kiuru M, Visuri T, Pihlajamaki H. Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation. A prospective randomized study. J Bone Joint Surg Am. 2009;91(2):263–73.  https://doi.org/10.2106/JBJS.G.01449.CrossRefPubMedGoogle Scholar
  71. 71.
    Tjoumakaris FP, Forsythe B, Bradley JP. Patellofemoral instability in athletes: treatment via modified Fulkerson osteotomy and lateral release. Am J Sports Med. 2010;38(5):992–9.  https://doi.org/10.1177/0363546509357682.CrossRefPubMedGoogle Scholar
  72. 72.
    Vivod G, Verdonk P, Drobnic M. Long-term clinical and radiographic outcome of patello-femoral realignment procedures: a minimum of 15-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2014;22(11):2747–55.  https://doi.org/10.1007/s00167-013-2637-2.CrossRefPubMedGoogle Scholar
  73. 73.
    Parikh SN, Albright J, Noyes FR. Proximal and distal extensor mechanism realignment: the surgical technique. Tech Knee Surg. 2006;5:27–38.CrossRefGoogle Scholar
  74. 74.
    Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513–8.CrossRefGoogle Scholar
  75. 75.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33(2):197–207.CrossRefGoogle Scholar
  76. 76.
    Ireland ML, Bolgla LA, Noehren B. Gender differences in core strength and lower extremity function during static and dynamic single-leg squat tests. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete. Causes, impacts, and conditioning programs. 2nd ed. Berlin Heidelberg, New York: Springer-Verlag; 2018. p. 239–57.CrossRefGoogle Scholar
  77. 77.
    Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42.  https://doi.org/10.1097/JSM.0b013e3180305de8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, Marcacci M. Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc. 2011;19(3):390–7.  https://doi.org/10.1007/s00167-010-1225-y.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Choi NH, Lee JH, Son KM, Victoroff BN. Tibial tunnel widening after anterior cruciate ligament reconstructions with hamstring tendons using rigidfix femoral fixation and intrafix tibial fixation. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):92–7.  https://doi.org/10.1007/s00167-009-0951-5.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Landes S, Nyland J, Elmlinger B, Tillett E, Caborn D. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc. 2010;18(3):317–24.  https://doi.org/10.1007/s00167-009-0931-9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–54.  https://doi.org/10.2519/jospt.2010.3168.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1108–15.  https://doi.org/10.1007/s00167-006-0138-2.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med. 2006;34(12):1933–40.CrossRefGoogle Scholar
  84. 84.
    Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP. Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy. 2005;21(7):774–85.CrossRefGoogle Scholar
  85. 85.
    Kvist J. Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med (Auckland, NZ). 2004;34(4):269–80.CrossRefGoogle Scholar
  86. 86.
    Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstr m P. Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts: a prospective, randomized study. J Bone Joint Surg Am. 2002;84-A(9):PG-1503-13.Google Scholar
  87. 87.
    Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports. 2002;12(2):73–80.CrossRefGoogle Scholar
  88. 88.
    Moller E, Forssblad M, Hansson L, Wange P, Weidenhielm L. Bracing versus nonbracing in rehabilitation after anterior cruciate ligament reconstruction: a randomized prospective study with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):102–8.CrossRefGoogle Scholar
  89. 89.
    Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472–9.  https://doi.org/10.1016/j.pmrj.2010.10.025.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil. 2013;22(7)Google Scholar
  91. 91.
    Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15(5):444–50.  https://doi.org/10.1016/j.jsams.2012.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.CrossRefGoogle Scholar
  93. 93.
    Reiman MP, Manske RC. Functional testing in human performance. Champaign: Human Kinetics; 2009.Google Scholar
  94. 94.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res. 1990;255(255):204–14.Google Scholar
  95. 95.
    Barrett GR, Luber K, Replogle WH, Manley JL. Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy. 2010;26(12):1593–601.  https://doi.org/10.1016/j.arthro.2010.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med. 2012;40(10):2348–56.  https://doi.org/10.1177/0363546512457551.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–23.  https://doi.org/10.2519/jospt.2014.4852.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sigward SM, Havens KL, Powers CM. Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train. 2011;46(5):471–5.CrossRefGoogle Scholar
  99. 99.
    Nilstad A, Andersen TE, Kristianslund E, Bahr R, Myklebust G, Steffen K, Krosshaug T. Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther. 2014;44(5):358–65.  https://doi.org/10.2519/jospt.2014.4969.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon). 2010;25(2):142–6.  https://doi.org/10.1016/j.clinbiomech.2009.10.005.CrossRefGoogle Scholar
  101. 101.
    Ireland ML, Durbin T, Bolgla LA. Gender differences in core strength and lower extremity function during the single-leg squat test. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. Berlin Heidelberg: Springer-Verlag; 2012. p. 203–19.CrossRefGoogle Scholar
  102. 102.
    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord. 2010;11:265.  https://doi.org/10.1186/1471-2474-11-265.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):41–50.CrossRefGoogle Scholar
  104. 104.
    Ireland ML. The female ACL: why is it more prone to injury? Orthop Clin North Am. 2002;33(4):637–51.CrossRefGoogle Scholar
  105. 105.
    Cortes N, Onate J, Van Lunen B. Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J Sports Sci. 2011;29(1):83–92.  https://doi.org/10.1080/02640414.2010.523087.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Jones PA, Herrington LC, Munro AG, Graham-Smith P. Is there a relationship between landing, cutting, and pivoting tasks in terms of the characteristics of dynamic valgus? Am J Sports Med. 2014;42(9):2095–102.  https://doi.org/10.1177/0363546514539446.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Nagano Y, Ida H, Akai M, Fukubayashi T. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee. 2009;16(2):153–8.  https://doi.org/10.1016/j.knee.2008.10.012.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988;22(4):141–4.CrossRefGoogle Scholar
  109. 109.
    Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252–61.  https://doi.org/10.1519/JSC.0b013e3181b22b3e.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cincinnati Sports Medicine and Orthopaedic CenterThe Noyes Knee InstituteCincinnatiUSA
  2. 2.Noyes Knee InstituteCincinnatiUSA

Personalised recommendations