Current Concepts of Plyometric Exercises for the Lower Extremity

  • George J. Davies
  • Bryan L. RiemannEmail author


Many sport activities require explosive movements of the lower extremities. Athletes are returning back to competition following knee injuries and surgeries faster than anyone could have predicted 10 years ago. However, that has not always been in the best interest of the patient because of reinjury rates and not being able to return to the same premorbid level of activity. The ability of the clinician to return the athlete back quickly and safely is multifactorial and includes advances in surgical techniques and rehabilitation, such as the use of integrated open and closed kinetic chain exercises, proprioceptive training, neuromuscular reactive dynamic stability exercises, and plyometrics.


Plyometrics Eccentric prestretch loading phase Transition amortization phase Concentric unloading shortening phase Periodization program Exercise Rehabilitation 


  1. 1.
    Adams K, O’Shea JP, O’Shea KL, Climstein M. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J Strength Cond Res. 1992;6(1):36–41.Google Scholar
  2. 2.
    Bedi JF, Cresswell AG, Engel TJ, Nicol SM. Increase in jumping height associated with maximal effort vertical depth jumps. Res Q Exerc Sport. 1987;58(1):11–5.CrossRefGoogle Scholar
  3. 3.
    Brown AC, Wells TJ, Schade ML, Smith DL, Fehling PC. Effects of plyometric training versus traditional weight training on strength, power, and aesthetic jumping ability in female collegiate dancers. J Dance Med Sci. 2007;11(2):38–44.Google Scholar
  4. 4.
    Chelly MS, Hermassi S, Aouadi R, Shephard RJ. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J Strength Cond Res. 2014;28(5):1401–10. Scholar
  5. 5.
    Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):24–31.PubMedPubMedCentralGoogle Scholar
  6. 6.
    de Villarreal ES, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506. Scholar
  7. 7.
    Duda M. Plyometrics: a legitimate form of power training? Phys Sportsmed. 1988;16(3):212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kyröläinen H, Avela J, McBride JM, Koskinen S, Andersen J, Sipilä S, Takala T, Komi P. Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports. 2005;15(1):58–64.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ramachandran S, Pradhan B. Effects of short-term two weeks low intensity plyometrics combined with dynamic stretching training in improving vertical jump height and agility on trained basketball players. Indian J Physiol Pharmacol. 2014;58(2):133–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramírez-Campillo R, Andrade DC, Izquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27(10):2714–22.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. J Athl Train. 2004;39(1):17–23.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chaouachi A, Hammami R, Kaabi S, Chamari K, Drinkwater EJ, Behm DG. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J Strength Cond Res. 2014;28(6):1483–96. Scholar
  13. 13.
    Franco-Márquez F, Rodríguez-Rosell D, Gonzalez-Suarez J, Pareja-Blanco F, Mora-Custodio R, Yanez-Garcia J, González-Badillo J. Effects of combined resistance training and plyometrics on physical performance in young soccer players. Int J Sports Med. 2015;94(11):906–14.Google Scholar
  14. 14.
    Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kinet. 2013;36:17–26. Scholar
  15. 15.
    Vissing K, Brink M, Lønbro S, Sørensen H, Overgaard K, Danborg K, Mortensen J, Elstrøm O, Rosenhøj N, Ringgaard S. Muscle adaptations to plyometric vs. resistance training in untrained young men. J Strength Cond Res. 2008;22(6):1799–810.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Davies GJ, Riemann B, Ellenbecker T. Role of isokinetic testing and training after ACL injury and reconstruction. In: Noyes FR, Barber-Westin S, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. Berlin: Springer; 2018. p. 567–88. Scholar
  17. 17.
    Fatouros IG, Jamurtas AZ, Leontsini D, Taxildaris K, Aggelousis N, Kostopoulos N, Buckenmeyer P. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J Strength Cond Res. 2000;14(4):470–6.Google Scholar
  18. 18.
    Rimmer E, Sleivert G. Effects of a plyometrics intervention program on sprint performance. J Strength Cond Res. 2000;14(3):295–301.Google Scholar
  19. 19.
    Rodríguez-Rosell D, Franco-Márquez F, Pareja-Blanco F, Mora-Custodio R, Yáñez-García JM, González-Suárez JM, González-Badillo JJ. Effects of 6 weeks resistance training combined with plyometric and speed exercises on physical performance of pre-peak-height-velocity soccer players. Int J Sports Physiol Perform. 2016;11(2):240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Saez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84. Scholar
  21. 21.
    Buchwald JS. Exteroceptive reflexes and movement. Am J Phys Med Rehabil. 1967;46:121–8.Google Scholar
  22. 22.
    Ebben WP, VanderZanden T, Wurm BJ, Petushek EJ. Evaluating plyometric exercises using time to stabilization. J Strength Cond Res. 2010;24(2):300–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hutton RS, Atwater SW. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992;14(6):406–21.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Komi P. Neuromuscular performance: factors influencing force and speed production. Scand J Sports Sci. 1979;1:2–15.Google Scholar
  25. 25.
    Kyrölänen H, Komi P, Kim D. Effects of power training on neuromuscular performance and mechanical efficiency. Scand J Med Sci Sports. 1991;1(2):78–87.CrossRefGoogle Scholar
  26. 26.
    Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–95.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Makaruk H, Czaplicki A, Sacewicz T, Sadowski J. The effects of single versus repeated plyometrics on landing biomechanics and jumping performance in men. Biol Sport. 2014;31(1):9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Struminger AH, Lewek MD, Goto S, Hibberd E, Blackburn JT. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises. Clin Biomech (Bristol, Avon). 2013;28(7):783–9.CrossRefGoogle Scholar
  29. 29.
    Allerheiligen B, Rogers R. Plyometrics program design. Strength Cond J. 1995;17(4):26–31.CrossRefGoogle Scholar
  30. 30.
    Chu DA, Plummer L. The language of plyometrics. Strength Cond J. 1984;6(5):30–1.CrossRefGoogle Scholar
  31. 31.
    Chu DA, Panariello RA. Jumping into plyometrics: sport specific plyometrics: baseball pitching. Nat Strength Cond Assn J. 1989;11:81–5.CrossRefGoogle Scholar
  32. 32.
    Chu DA. Jumping into plyometrics. Champaign, IL: Leisure Press; 1992.Google Scholar
  33. 33.
    Chu DA, Cordier DJ. Plyometrics in rehabilitation. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone; 2000.Google Scholar
  34. 34.
    Davies GJ, Matheson JW. Shoulder plyometrics. Sports Med Arthrosc Rev. 2001;9(1):1–18.CrossRefGoogle Scholar
  35. 35.
    Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760–86.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gambetta V, Odgers S. The complete guide to medicine ball training. Sarasota, FL: Optimum Sports Training; 1991.Google Scholar
  37. 37.
    Heiderscheit B, Rucinski T. Biomechanical and physiologic basis of closed kinetic chain exercises in the upper extremities. Orthop Phys Ther Clin North Am. 2000;9(2):209–18.Google Scholar
  38. 38.
    Hill J, Leiszler M. Review and role of plyometrics and core rehabilitation in competitive sport. Curr Sports Med Rep. 2011;10(6):345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Miyaguchi K, Demura S. Gender difference in ability using the stretch-shortening cycle in the upper extremities. J Strength Cond Res. 2009;23(1):231–6.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lundin P. Plyometrics: a review of plyometric training. Strength Cond J. 1985;7(3):69–76.CrossRefGoogle Scholar
  41. 41.
    Lundin P, Berg W. Plyometrics: a review of plyometric training. Strength Cond J. 1991;13(6):22–34.CrossRefGoogle Scholar
  42. 42.
    Radcliffe JC, Farentinos RC. Plyometrics: explosive power training. Champaign, IL: Human Kinetics; 1985.Google Scholar
  43. 43.
    Tyler TF, Cuoco A. Plyometric training and drills. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 3rd ed. Philadelphia: Saunders; 2004.Google Scholar
  44. 44.
    Voight M. Stretch-strengthening: an introduction to plyometrics. Orthop Phys Ther Clin North Am. 1992;1:243–52.Google Scholar
  45. 45.
    Chu DC. Plyometrics: the link between strength and speed. Strength Cond J. 1983;5(2):20–1.CrossRefGoogle Scholar
  46. 46.
    Chu DA. Plyometric exercises with the medicine ball. Livermore, CA: Bittersweet Publishing; 1989.Google Scholar
  47. 47.
    Chu DA. Explosive power and strength. Champaign, IL: Human Kinetics; 1996.Google Scholar
  48. 48.
    Verkhoshansky Y. Perspectives in the improvement of speed-strength preparation of jumpers. Yessis Rev Sov Phys Educ Sports. 1969;4:28–34.Google Scholar
  49. 49.
    Verkhoshansky Y. Depth jumping in the training of jumpers. Track Tech. 1973;51:1618–9.Google Scholar
  50. 50.
    Wathen D. Literature review: explosive/plyometric exercises. Strength Cond J. 1993;15(3):17–9.CrossRefGoogle Scholar
  51. 51.
    Wilt F. Plyometrics: what it is and how it works. Athl J. 1975;55(5):89–90.Google Scholar
  52. 52.
    Davies GJ. The need for critical thinking in rehabilitation. J Sport Rehabil. 1995;4(1):1–22.CrossRefGoogle Scholar
  53. 53.
    Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand. 1979;106(4):467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bosco C, Komi PV, Ito A. Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand. 1981;111(2):135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Fiebert I, Hardy CJ, Werner KL. Electromyographic analysis of the quadriceps femoris during isokinetic eccentric activation. Isokinet Exerc Sci. 1992;2(1):18–23.CrossRefGoogle Scholar
  56. 56.
    Knuttgen HG, Klausen K. Oxygen debt in short-term exercise with concentric and eccentric muscle contractions. J Appl Physiol. 1971;30(5):632–5.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wilson JM, Flanagan EP. The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res. 2008;22(5):1705–15.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wu YK, Lien YH, Lin KH, Shih TT, Wang TG, Wang HK. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports. 2010;20(1):e80–6. Scholar
  59. 59.
    Behrens M, Mau-Moeller A, Bruhn S. Effect of plyometric training on neural and mechanical properties of the knee extensor muscles. Int J Sports Med. 2014;35(02):101–19.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37(1):80.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Rowinski M. Afferent neurobiology of the joint. In: Gould JA, Davies GJ, editors. Orthopaedic and sports physical therapy. St. Louis: C.V. Mosby; 1985. p. 50–65.Google Scholar
  63. 63.
    Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand. 1974;91(3):385–92.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bosco C, Viitasalo J, Komi P, Luhtanen P. Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise. Acta Physiol Scand. 1982;114(4):557–65.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cavagna G, Saibene F, Margaria R. Effect of negative work on the amount of positive work performed by an isolated muscle. J Appl Physiol. 1965;20(1):157–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Cavagna GA, Dusman B, Margaria R. Positive work done by a previously stretched muscle. J Appl Physiol. 1968;24(1):21–32. Scholar
  67. 67.
    Thys H, Faraggiana T, Margaria R. Utilization of muscle elasticity in exercise. J Appl Physiol. 1972;32(4):491–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance. Sports Med. 2010;40(4):303–26.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    van Ingen Schenau GJ, de Koning JJ, de Groot G. Optimisation of sprinting performance in running, cycling and speed skating. Sports Med. 1994;17(4):259–75.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Cavagna G, Mazzanti M, Heglund N, Citterio G. Storage and release of mechanical energy by active muscle: a non-elastic mechanism? J Exp Biol. 1985;115(1):79–87.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Häkkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75(4):333–42.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nicol C, Avela J, Komi PV. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue. Sports Med. 2006;36(11):977–99.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    McBride JM, McCaulley GO, Cormie P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res. 2008;22(3):750–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Cavanagh PR, Komi PV. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol. 1979;42(3):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cavagna GA. Elastic bounce of the body. J Appl Physiol. 1970;29(3):279–82. Scholar
  76. 76.
    Grosset J-F, Piscione J, Lambertz D, Pérot C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur J Appl Physiol. 2009;105(1):131.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wilson GJ, Elliott BC, Wood G. The effect on performance of imposing a delay during a stretch-shorten. Med Sci Sports Exerc. 1991;23(3):364–70.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308–19. Scholar
  79. 79.
    Fukunaga T, Kawakarni Y, Muraoka T, Kanehisa H. Muscle and tendon relations in humans: power enhancement in counter-movement exercise. Adv Exp Med Biol. 2002;508:501–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kawakami Y, Muraoka T, Ito S, Kanehisa H, Fukunaga T. In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity. J Physiol. 2002;540(2):635–46.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Clarkson PM, Byrnes WC, Gillisson E, Harper E. Adaptation to exercise-induced muscle damage. Clin Sci. 1987;73(4):383–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Davies GJ, Ellenbecker TS. Eccentric isokinetics. Orthop Phys Ther Clin North Am. 1992;1(2):297–336.Google Scholar
  83. 83.
    Fridén J, Seger J, Sjöström M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med. 1983;4(03):177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Komi PV, Buskirk E. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics. 1972;15(4):417–34.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Komi PV, Rusko H. Quantitative evaluation of mechanical and electrical changes during fatigue loading of eccentric and concentric work. Scand J Rehabil Med Suppl. 1974;3:121–6.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Holcomb WR, Kleiner DM, Chu DA. Plyometrics: considerations for safe and effective training. Strength Cond J. 1998;20(3):36–41.CrossRefGoogle Scholar
  87. 87.
    Murtagh CF, Nulty C, Vanrenterghem J, O’Boyle A, Morgans R, Drust B, Erskine RM. The neuromuscular determinants of unilateral jump performance in soccer players are direction-specific. Int J Sports Physiol Perform. 2018;13(5):604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Nyland J, Fisher B, Brand E, Krupp R, Caborn DN. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy. 2010;26(9):1248–57.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Reiman MP, Rogers ME, Manske RC. Interlimb differences in lower extremity bone mineral density following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2006;36(11):837–44.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    van Meer B, Waarsing J, van Eijsden W, Meuffels D, van Arkel E, Verhaar J, Bierma-Zeinstra S, Reijman M. Bone mineral density changes in the knee following anterior cruciate ligament rupture. Osteoarthr Cartil. 2014;22(1):154–61.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Fouré A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol. 2010;109(3):849–54.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Fouré A, Nordez A, McNair P, Cornu C. Effects of plyometric training on both active and passive parts of the plantarflexors series elastic component stiffness of muscle–tendon complex. J Appl Physiol. 2011;111(3):539–48.CrossRefGoogle Scholar
  93. 93.
    Hirayama K, Iwanuma S, Ikeda N, Yoshikawa A, Ema R, Kawakami Y. Plyometric training favors optimizing muscle–tendon behavior during depth jumping. Front Physiol. 2017;8:16.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Houghton LA, Dawson BT, Rubenson J. Effects of plyometric training on achilles tendon properties and shuttle running during a simulated cricket batting innings. J Strength Cond Res. 2013;27(4):1036–46.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ishikawa M, Komi PV. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol. 2004;96(3):848–52.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):1801–10.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5(15):e13374.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fouré A, Nordez A, Guette M, Cornu C. Effects of plyometric training on passive stiffness of gastrocnemii and the musculo-articular complex of the ankle joint. Scand J Med Sci Sports. 2009;19(6):811–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ. Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res. 2007;21(3):986.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Elftman H. Biomechanics of muscle with particular application to studies of gait. J Bone Joint Surg Am. 1966;48(2):363–77.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22. Scholar
  102. 102.
    Behrens M, Mau-Moeller A, Mueller K, Heise S, Gube M, Beuster N, Herlyn PK, Fischer D-C, Bruhn S. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. J Sci Med Sport. 2016;19(2):170–6.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kannas TM, Kellis E, Amiridis IG. Incline plyometrics-induced improvement of jumping performance. Eur J Appl Physiol. 2012;112(6):2353–61.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kyröläinen H, Avela J, McBride J, Koskinen S, Andersen J, Sipilä S, Takala T, Komi P. Effects of power training on mechanical efficiency in jumping. Eur J Appl Physiol. 2004;91(2-3):155–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bigland B, Lippold OC. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol. 1954;123(1):214–24.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Voigt M, Chelli F, Frigo C. Changes in the excitability of soleus muscle short latency stretch reflexes during human hopping after 4 weeks of hopping training. Eur J Appl Physiol Occup Physiol. 1998;78(6):522–32.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Costello F. Bounding to the top: the complete book on plyometric training. West Bowie, MD: Athletic Training Consultants; 1990.Google Scholar
  109. 109.
    Ebben WE, Blackard DQ, Jensen RL. Quantification of medicine ball vertical impact forces: estimating effective training loads. J Strength Cond Res. 1999;13(3):271–4.Google Scholar
  110. 110.
    Ernst G, Moore J, VanLunen B, Ball D. Pondering plyometrics. J Orthop Sports Phys Ther. 1997;25(5):350–2.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Voight ML, Tippett SR. Plyometric exercise. In: Prentice W, Voight M, Hoogenboom B, editors. Musculoskeletal interventions: techniques for therapeutic exercise. New York: McGraw-Hill Publishing; 2006.Google Scholar
  112. 112.
    Davies GJ. A compendium of isokinetics in clinical usage. 1st ed. La Crosse, WI: S & S Publishers; 1984.Google Scholar
  113. 113.
    Davies GJ. A compendium of isokinetics in clinical usage. Onalaska, WI: S & S Publishers; 1992.Google Scholar
  114. 114.
    Albert M. Eccentric muscle training in sports and orthopaedics. New York: Churchill Livingstone; 1991.Google Scholar
  115. 115.
    DeNuccio DK, Davies GJ, Rowinski MJ. Comparison of quadriceps isokinetic eccentric and isokinetic concentric data using a standard fatigue protocol. Isokinet Exerc Sci. 1991;1(2):81–6.CrossRefGoogle Scholar
  116. 116.
    Ebben WP, Simenz C, Jensen RL. Evaluation of plyometric intensity using electromyography. J Strength Cond Res. 2008;22(3):861–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Ebben WP, Fauth ML, Kaufmann CE, Petushek EJ. Magnitude and rate of mechanical loading of a variety of exercise modes. J Strength Cond Res. 2010;24(1):213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Eldred E. Functional implications of dynamic and static components of the spindle response to stretch. Am J Phys Med Rehabil. 1967;46(1):129–40.Google Scholar
  119. 119.
    Wilson GJ, Murphy AJ, Giorgi A. Weight and plyometric training: effects on eccentric and concentric force production. Can J Appl Physiol. 1996;21(4):301–15.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Moritani T. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Davies GJ. Open kinetic chain assessment and rehabilitation. Athl Train Sports Health Care Perspect. 1995;1(4):347–70.Google Scholar
  122. 122.
    Davies GJ, Heiderscheit BC, Konin J. Open and closed kinetic chain exercises: functional application in orthopedics. In: Wadsworth C, editor. Strength and conditioning applications in orthopedics (home study course 98A). Alexandria, VA: Orthopedic Section APTA; 1998. p. 1–19.Google Scholar
  123. 123.
    Davies GJ, Heiderscheit BC, Clark M. Open and closed kinetic chain rehabilitation. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone; 2000. p. 291–300.Google Scholar
  124. 124.
    Davies GJ. The scientific and clinical rationale for the integrated approach to open and closed kinetic chain rehabilitation. Ortho Phys Ther Clin North Am. 2000;9:247–67.Google Scholar
  125. 125.
    Davies GJ. Application of the concepts of periodization to rehabilitation. In: Bandy WD, editor. Current trends in therapeutic exercise for the rehabilitation of the athlete (home study course). La Crosse, WI: SPTS; 1997.Google Scholar
  126. 126.
    Voight ML, Hardin JA, Blackburn TA, Tippett S, Canner GC. The effects of muscle fatigue on and the relationship of arm dominance to shoulder proprioception. J Orthop Sports Phys Ther. 1996;23(6):348–52.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Jarvis MM, Graham-Smith P, Comfort P. A methodological approach to quantifying plyometric intensity. J Strength Cond Res. 2016;30(9):2522–32.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Jensen RL, Ebben WP. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J Strength Cond Res. 2007;21(3):763–7.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Fleck SJ, Kraemer WJ. Periodization breakthrough: the ultimate training system. New York: Advanced Research Press; 1996.Google Scholar
  130. 130.
    American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. Scholar
  131. 131.
    Baechle TR, Earle RW. Essentials of strength training and conditioning: national strength and conditioning association. 3rd ed. Champaign, IL: Human Kinetics; 2008.Google Scholar
  132. 132.
    Elias AR, Hammill CD, Mizner RL. The effect of body weight support on kinetics and kinematics of a repetitive plyometric task. J Appl Biomech. 2016;32(1):69–77. Scholar
  133. 133.
    Davies GJ, Zillmer DA. Functional progression of a patient through a rehabilitation program. Orthop Phys Ther Clin North Am. 2000;9:103–18.Google Scholar
  134. 134.
    Davies GJ. Individualizing the return to sports after anterior cruciate ligament reconstruction. Oper Tech Orthop. 2017;27(1):70–8.CrossRefGoogle Scholar
  135. 135.
    Davies GJ, McCarty E, Provencher M, Manske RC. ACL return to sport guidelines and criteria. Curr Rev Musculoskelet Med. 2017;10:307–14. Scholar
  136. 136.
    Manske RC, DeCarlo M, Davies GJ, Paterno MV. Anterior cruciate ligament reconstruction: rehabilitation concepts. Orthop Knowledge Online J. 2017;15(3):1–8.Google Scholar
  137. 137.
    Crowther RG, Spinks WL, Leicht AS, Spinks CD. Kinematic responses to plyometric exercises conducted on compliant and noncompliant surfaces. J Strength Cond Res. 2007;21(2):460–5. Scholar
  138. 138.
    Ellenbecker TS, Davies GJ. Closed kinetic chain exercises: a comprehensive guide to multiple joint exercise. Champaign, IL: Human Kinetics; 2001.Google Scholar
  139. 139.
    Tabor MA, Davies GJ, Kernozek TW, Negrete RJ, Hudson V. A multicenter study of the test–retest reliability of the lower extremity functional test. J Sport Rehabil. 2002;11(3):190–201.CrossRefGoogle Scholar
  140. 140.
    Binder D, Brown-Cross D, Shamus E, Davies G. Peak torque, total work and power values when comparing individuals with Q-angle differences. Isokinet Exerc Sci. 2001;9(1):27–30.CrossRefGoogle Scholar
  141. 141.
    Davies GJ, Wilk KE, Ellenbecker TS. Assessment of strength. In: Malone TR, McPoil TO, Nitz AJ, editors. Orthopedic and sports physical therapy. St. Louis: Mosby; 1997. p. 225–56.Google Scholar
  142. 142.
    Davies GJ, Ellenbecker TS. The scientific and clinical application of isokinetics in evaluation and treatment of the athlete. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 2nd ed. Philadelphia, PA: W.B. Saunders; 1999. p. 219–59.Google Scholar
  143. 143.
    Davies GJ, Heiderscheit BC, Brinks K. Test interpretation. In: Brown LE, editor. Isokinetics in human performance. Champaign, IL: Human Kinetics; 2000. p. 1–24.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physical Therapy ProgramGeorgia Southern University - Armstrong CampusSavannahUSA
  2. 2.Biodynamics and Human Performance CenterSavannahUSA
  3. 3.Department of Health Sciences and KinesiologyGeorgia Southern University - Armstrong CampusSavannahUSA

Personalised recommendations