Stress Fractures

  • Sergio Migliorini
  • Marco Merlo


Stress fractures are a common cause of injury in triathletes. There is a spectrum of bone response to repetitive stress: normal response, stress reaction, and stress fracture. Physicians should maintain a high index of suspicion for stress fracture in triathletes presenting with insidious onset of focal bone tenderness associated with recent changes in training volume or intensity. Accurate and timely diagnosis and treatment are essential in the care of the athlete with stress fracture. Imaging, particularly MRI (magnetic resonance imaging), is often utilized to supplement the history and the physical examination. Poor training technique and a variety of extrinsic and intrinsic risk factors, including RED-S (relative energy deficiency in sports), may predispose triathletes to stress fractures. To provide treatment and prognostic parameters, it is important to classify stress fractures as high risk versus low risk, based on the anatomic location of the fracture and the natural history of fractures occurring at this anatomic site. It is particularly important to recognize “high-risk” fractures, as these are associated with an increased risk of complications. The best form of treatment for stress fracture is prevention. Any contributing factors, such as biomechanical abnormalities, anatomy, gender, nutrition, equipment, and running terrain, should be addressed.


Stress fractures Overuse injuries Running injuries Triathlon 


  1. 1.
    Ireland ML, Micheli LJ. Triathletes: biographic data, training and injury patterns. AnnSports Med. 1987;3:117–20.Google Scholar
  2. 2.
    Gosling CM, Forbes AB, McGivern J, Gabbe BJ. A profile of injuries in athletes seeking treatment during a triathlon race series. Am J Sports Med. 2010;38(5):1007–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Collins K, Wagner M, Peyterson KP, Storey M. Overuse injuries in triathletes: a study in Seafair triathlon. Am J Sports Med. 1989;17(5):675–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Migliorini S. An epidemiological study of overuse injuries in italian national triathletes in the period 1987-1990. J Sports TraumatolRelat Res. 1991;13:197–206.Google Scholar
  5. 5.
    Vleck VE, Burgi A, Bentley DJ. The consequences of swim, cycle, and run performance on overall result in elite olympic distance triathlon. Int J Sports Med. 2006;27:43–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Beck BR. Tibial stress injuries. An aetiological review for the purpose of guiding management. Sports Med. 1998;26(4):265–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Harrast MA, Colonno D. Stress fracture in runners. Clin Sports Med. 2010;29:399–416.CrossRefPubMedGoogle Scholar
  8. 8.
    Burns J, Keenan AM, Redmond AC. Factors associated with triathlon-related overuse injuries. J Orthop Sports Phys Ther. 2003;33:177–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Korkia PK, Tunstall-Pedoe DS, Maffulli N. An epidemiological investigation of training and injury patterns in British triathletes. Br J Sports Med. 1994;28:191–1996.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hausswirth C, Lehenaff D. Physiological demands of running during long distance runs and triathlons. Sports Med. 2001;31:679–89.CrossRefPubMedGoogle Scholar
  11. 11.
    Hausswirth C, Brisswalter J. Strategies for improving performance in long duration events: Olympic distance triathlon. Sports Med. 2008;38:881–91.CrossRefPubMedGoogle Scholar
  12. 12.
    O’Toole ML, Hiller DB, Crosby LO. The ultraendurance triathlete: a physiological profile. Med Sci Sports Exerc. 1987;19:45–50.PubMedGoogle Scholar
  13. 13.
    Millet GP, Millet GY, Hofman MD, Cadau RB. Alteration in running economy and mechanics after maximal cycling in triathletes: influence of performance level. Int J Sports Med. 2000;21:127–32.CrossRefPubMedGoogle Scholar
  14. 14.
    Migliorini S, Bomprezzi A. Il triathlon. Med Sport. 2003;56:123–37.Google Scholar
  15. 15.
    Woloshin M, Worsk J, Brull M. Force wave transmission through the human locomotor system. J Biomech Eng. 1981;103:48–50.CrossRefGoogle Scholar
  16. 16.
    Migliorini S. The triathlon: acute and overuse injuries. J Sports Traumatol RelatRes. 2000;22(4):186–95.Google Scholar
  17. 17.
    Jones BH, Cowan DN, Knapik JJ. Exercise, training and injuries. Sports Med. 1994;18:202–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Orava S, Puran J, Ala-ketola L. Stress fractures caused by physical exercise. Acta Orthop Scand. 1978;49:19–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Maffulli N, Longo UG, Denaro V. Femoral neck stress fractures. OperTechSports Med. 2009;17:90–3.Google Scholar
  20. 20.
    Zahger D, Abrmovitz A, Zellikovsky L, et al. Stress fractures in female soldiers: an epidemiological investigation of an outbreak. Mil Med. 1988;153(9):448–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Cook SD, Kester MA, Brunet ME, Haddad jr RJ. Biomechanics of running shoe performance. ClinSport Med. 1985;4:619–26.Google Scholar
  22. 22.
    Kelsey JL, Bachrach LK, Procter-Gray E, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Ruohola JP, Laaksi I, Ylikomi T, et al. Association between serum 25(OH) D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Lappe J, Cullen D, Hayanatzki G, et al. Calcium and vitamin D supplemetation decreas incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23:741–9.CrossRefPubMedGoogle Scholar
  25. 25.
    McCabe MP, Smyth MP, Richardson DR. Current concept review: vitamin D and stress fractures. Foot Ankle Int. 2012;33:526–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Wentz L, Liu PY, Ilich JZ, et al. Dietary and training predictors of stress fractures in female runners. Int J Sport Nutr Exerc Metab. 2012;22:374–82.CrossRefPubMedGoogle Scholar
  27. 27.
    McCormick F, Nwachukwu BA, Provencher MT. Stress fractures in runners. Clin Sports Med. 2012;31:291–306.CrossRefPubMedGoogle Scholar
  28. 28.
    Brunet ME, Cook SD, Brinker MR, et al. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.PubMedGoogle Scholar
  29. 29.
    Mountjoy M, Sundgot-Borgen BL, et al. The IOC consensus statement: beyond the female athlete triad-relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48:491–7.CrossRefGoogle Scholar
  30. 30.
    Li D, Hicthcock CL, Sl B, et al. Negative spinal bone mineral density changes and subclinical ovulatory disturbances-prospective data in healthy premenopausal women with regular menstrual cycles. Epidemiol Rev. 2014;36:137–47.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6:173–81.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lambrinoudaki I, Papadimitriou D. Pathophysioloy of bone loss in the female athlete. Ann N Y Acad Sci. 2010;1205:45–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Okamoto S, Arai Y, Hara K, et al. A displaced stress fracture of the femoral neck in an adolescent female distance runner with female athlete triad: a case report. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:6.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Goolsby MA, Barrack MT, Nativ A. A displaced femoral neck stress fracture in an amenorrheic adolescent female runner. Sports Health. 2012;4:352–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bennell KL, Malcom SA, Thomas SA, et al. The incidence and distribution of stress fractures in competitive track and field athletes: a twelve month propsective study. Am J Sports Med. 1996;24(2):211–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Korpelainen R, Orava S, Karpakka J, et al. Risk factors for recurrent stress fractures in athletes. Am J Sport Med. 2001;29(3):304–10.CrossRefGoogle Scholar
  37. 37.
    Friberg O. Leg lenght asymmetry in stress fractures. A clinical and radiological study. J Sports Med Phys Fitness. 1982;22(4):485–8.PubMedGoogle Scholar
  38. 38.
    Simkin A, Leichter I, Giladi M, et al. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle. 1989;10(1):25–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Sullivan D, Warren RF, Pavlov H, et al. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92.Google Scholar
  40. 40.
    Newsham-West RJ, Lyons B, Milburn PD. Regional bone geometry of the tibia in triathletes and stress reractions an observetional study. J Sci Med Sport. 2014;17(2):150–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Crossley K, Bennell KL, Wrigley T, et al. Ground reaction forces, bone characteristics, and tibial stress fractures in male runners. Med Sci Sports Exerc. 1999;31(8):1088–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Tenforde AS, Kraus E, Fredericson M. Bone stress injuries in runners. Phys Med Rehabil Clin N Am. 2016;27:139–49.CrossRefPubMedGoogle Scholar
  43. 43.
    Pohl MB, Mulineaux DR, Milner CE, et al. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008;41(6):1160–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Milner CE, Davis IS, Hamil J. Is dynamic hip and knee malalignment associated with tibial stress fracture in female distance runners? Med Sci Sport Exerc. 2005;37(5s):S346.Google Scholar
  45. 45.
    Davis IS, Milner CE, Hamil J. Does increased loading during running lead to tibial stress fractures ? A prospective study. Med Sci Sports Exerc. 2004;36:S58.Google Scholar
  46. 46.
    Kiss ZA, Khan KM, Fuller PJ. Stress fracture of the tarsal navicular bone: CT findings in 55 cases. AJR Am J Roentgenol. 1993;160(1):111–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Khan KM, Fuller PJ, Brukner PD, et al. Outcome of conservative and surgical management of navicular stress fracture in athletes. Eighty-six cases proven with computerized tomography. Am J Sports Med. 1992;20(6):657–66.CrossRefPubMedGoogle Scholar
  48. 48.
    Moran DS, Evans RK, Hadad E. Imaging of lower extremity stress fracture injuries. Sports Med. 2008;38(4):345–56.CrossRefPubMedGoogle Scholar
  49. 49.
    Fredericson M, Bergman AG, Hoffman KL, et al. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Nattiv A, Kennedy G, Barrack MT, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1939–41.CrossRefGoogle Scholar
  51. 51.
    Johansson C, Ekenman I, Torkvist H, et al. Stress fractures of the femoral neck in athletes. Am J Sports Med. 1990;18:524–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee C, Huang G, Chao K, et al. Surgical treatment of displaced stress fractures of the femoral neck in military recruits: a report of 42 cases. Arch Orthop Trauma Surg. 2003;8:527–33.CrossRefGoogle Scholar
  53. 53.
    DeFranco MJ, Recht M, Schils J, et al. Stress fractures of the femoral neck. Clin Sports Med. 2006;25(1):89–103.CrossRefPubMedGoogle Scholar
  54. 54.
    Fullerton LR Jr. Femoral neck stress fractures. Sports Med. 1990;9(3):192–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Egol KA, Koval KJ, Kummer F, et al. Stress fractures of the femoral neck. Clin Orthop Relat Res. 1998;348:72–8.CrossRefGoogle Scholar
  56. 56.
    Fullerton LR Jr, Snowdy HA. Femoral neck stress fractures. Am J Sports Med. 1988;16(4):365–77.CrossRefPubMedGoogle Scholar
  57. 57.
    Fredericson M, Jennings F, Beaulieu C, et al. Stress fractures in athletes. Top Magn Reson Imaging. 2006;17(5):309–25.CrossRefPubMedGoogle Scholar
  58. 58.
    Retting AC, Shelbourne KD, McCarroll JR, et al. The natural history and treatment of delayded union stress fractures of the anterior cortex of the tibia. Am J Sports Med. 1988;16(3):250–5.CrossRefGoogle Scholar
  59. 59.
    Mallee WH, Weel H, Van Dijk CN, et al. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review. Br J Sports Med. 2015;49(6):370–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Sherbody PS. Stress fracture of the medial malleolus and distal fibula. Clin Sports Med. 2006;25(1):129–37.CrossRefGoogle Scholar
  61. 61.
    Shelbourne KD, Fisher DA, Retting AC, et al. Stress fractures of the medial malleolus. Am J Sports Med. 1988;16(1):60–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Golano P, Farinas O, Saenz I. The anatomy of the navicular and periarticular structures. Foot Ankle Clin. 2004;9(1):1–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Torg JS, Pavlov H, Cooley LH, et al. Stress fractures of the tarsal navicular. A retrospective review of twenty-one cases. J Bone Joint Surg Am. 1982;64(5):700–12.CrossRefPubMedGoogle Scholar
  64. 64.
    Saxena A, Fullern B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg. 2000;39(2):96–103.CrossRefPubMedGoogle Scholar
  65. 65.
    Rachel JS, Walters EE, O’Malley MJ. Tarsal navicular stress fractures. Curr Rev Musculoskelet Med. 2017;10(1):122–30.CrossRefGoogle Scholar
  66. 66.
    Mallee WH, Weel H, Van Dick CN, et al. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fitht metatarsal base): a systematic review. Br J Sports Med. 2015;49:370–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Hunt KJ, Goeb Y, Esparza R, et al. Site-specific loading at the fifth metatarsal base in rehabilitative devices: implications for Jones fractures treatment. PM R. 2014;6(11):1022–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Hunt KJ, Anderson RB. Treatment of Jones fracture nonunions and refractures in the elite athlete: outcomes of intrasmedullary screw fixation with bone grafting. Am J Sports Med. 2011;39(9):1948–54.CrossRefPubMedGoogle Scholar
  69. 69.
    Micheli LJ, Sohn RS, Solomon R. Stress fracture of the second metatarsal involving Lisfranc’s joint in ballet dancers. A new overuse injury of the foot. J Bone Joint Surg Am. 1985;67(9):1372–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Iwamoto J, Takeda T. Stress fractures in athletes: review of 196 cases. J Orthop Sci. 2003;8:273–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Saxena A, Krisdakumtorn T. Return to activity after sesamoidectomy in athletically active individuals. Foot Ankle Int. 2003;24(5):415–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Frederiscson M, Salamancha L, Beaulieu C. Sacral stress fractures: tracking down non specific pain in distance runners. Phys Sportsmed. 2003;31(2):31–42.CrossRefGoogle Scholar
  73. 73.
    Hosey RG, Fernandez MM, Johnson DL. Evaluation and management of stress fractures of the pelvis and sacrum. Orthopedics. 2008;31(4):383–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Ha KL, Hahn SH, Chung MY, et al. A clinical study of stress fractures in sports activities. Orthopedics. 1991;14(10):1089–95.PubMedGoogle Scholar
  75. 75.
    Johnson A, Weiss C, Wheeler D. Stress fractures of the femoral shaft in athletes: more common than expected. Am J Sports Med. 1994;22:248–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Matheson GO, Clement DB, McKenzie DC, et al. Stress fractures in athletes: a study of 320 cases. Am J Sports Med. 1987;15(1):46–58.CrossRefPubMedGoogle Scholar
  77. 77.
    Young AJ, McAllister DR. Evaluation and treatment of tibial stress fractures. Clin Sports Med. 2006;25(1):117–28.CrossRefPubMedGoogle Scholar
  78. 78.
    Miller MD, Marks PH, Fu FH. Bilateral stress fractures of the distal fibula in a 35-year old woman. Foot Ankle Int. 1994;15:450–3.CrossRefPubMedGoogle Scholar
  79. 79.
    De Souza MJ, Nattiv A, Joy E, et al. Female Athlete Triad Coalition Consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br J Sport Med. 2014;48:289.CrossRefGoogle Scholar
  80. 80.
    Lappe J, Cullen D, Haynatzki G, et al. Calcium and vit D supplementation decreases the incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23:741–9.CrossRefPubMedGoogle Scholar
  81. 81.
    McNicholl DM, Heaney LG. The safety of bisphosphonate use in pre-menopausal women on corticosteroids. Curr Drug Saf. 2010;5(2):182–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Shima Y, Engebretsen L, Iwasa J, et al. Use of bisphosphonates for the treatment of stress fractures in athletes. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):542–50.CrossRefPubMedGoogle Scholar
  83. 83.
    Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicina position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.CrossRefGoogle Scholar
  84. 84.
    Vanheest JL, Rodgers CD, Mahoney CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.CrossRefGoogle Scholar
  85. 85.
    Nattiv A, Armsey TD Jr. Stress injury to bone in female athletes. Clin Sports Med. 1997;16(2):197–224.CrossRefPubMedGoogle Scholar
  86. 86.
    Simon AM, Manigrasso MB, O’Connor JP. Cyclo-oxygenase 2 function essential for bone fracture healing. J Bone MinerRes. 2002;17(6):963–76.CrossRefGoogle Scholar
  87. 87.
    Jones BH, Thacker sB, Gilchrist J, et al. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epimediol Rev. 2002;24(2):228–47.Google Scholar
  88. 88.
    Cook SD, Kester MA, Brunet ME, et al. Biomechanics of running shoe performance. Clin Sports Med. 1985;4:619–26.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Benazzo F, Mosconi M, Beccarisi G, et al. Use of capacitative coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.Google Scholar
  90. 90.
    Beck BR, Matheson GO, Bergman G, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.CrossRefPubMedGoogle Scholar
  91. 91.
    Moretti B, Notamicola A, Garofalo R, et al. Shock waves in the treatment of stress fractures. Ultrasound Med Biol. 2009;35(6):1042–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Tiecheng Y, Wolfgang GJ, Changij Y, et al. Shock waves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Phys. 2010;298(3):457–64.CrossRefGoogle Scholar
  93. 93.
    Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181–4.CrossRefPubMedGoogle Scholar
  94. 94.
    Moen MH, Schipper M, Schmikli S, et al. Shockwave treatment for medial tibial stress syndrome in athletes; a prospective controlled study. Br JSports Med. 2012;46:253–7.CrossRefGoogle Scholar
  95. 95.
    Bushman BA, Flynn MG, Andres FF, et al. Effect of 4 week of deep water run training on performance. Med Sci Sports Exerc. 1997;29(5):694–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Wilbur RL, Moffatt RJ, Scott BE, et al. Influence of water run training on the maintenance of aerobic performance. Med Sci Sports Exerc. 1996;28(8):1056–62.CrossRefGoogle Scholar
  97. 97.
    Brukner P, Bradshaw C, Bennell K. Managing common stress fractures: let risk level guide treatment. Sport Med. 1998;26(8):39–47.Google Scholar
  98. 98.
    Serrano S, Figuereido P, Pascoa PJ. Fatigue fracture of the calcaneus: from early diagnosis to treatment: a case report of a triathlon athlete. Am J Phys Med Rehabil. 2016;95(6):79–83.CrossRefGoogle Scholar
  99. 99.
    Robertson GA, Wood AM. Lower limb stress fractures in sport: optimising their management and outcome. World J Orthop. 2017;8(3):242–55.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    MiglioriniS.Stress fractures of the lower limb in athletes (2015) Paper presented at the 3rd Science+Triathlon conference, 26–27 November 2015, INSEP, Paris.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergio Migliorini
    • 1
  • Marco Merlo
    • 2
  1. 1.International Triathlon Union ITUMedical Committee Maison du Sport InternationalLausanneSwitzerland
  2. 2.Department of OrthopaedicsBusto Arsizio General HospitalBusto ArsizioItaly

Personalised recommendations