Anterior Knee Pain

  • Thilo Hotfiel
  • Martin Engelhardt
  • Casper Grim


Anterior knee pain (AKP) as a nonspecific symptom and encompasses a broad range of different symptoms and multiple underlying functional and/or structural abnormalities. AKP is a common disorder in athletes who participate in endurance sports, particularly in triathlon that involves repetitive loading of the knee. Due to an expanding participation of the population in recreational and elite triathlon and the general high prevalence of knee pain in this sport, acute and overuse injuries of the knee are frequently observed. Most of the injuries can be related to overuse and/or functional etiology; however acute traumatic injuries may occur as well. Frequent overuse injuries of the knee include patellofemoral pain, patellar tendinopathies, plica injuries or disorders of the infrapatellar fat pad. Diagnostics for identifying the source of pain as well as a successful treatment remain challenging to ensure a successful treatment, a short time loss of training or competition and to avoid reinjuries and harmful sequelae. Addressing anterior knee pain cannot be considered in isolation to structural abnormalities, as it requires a thorough assessment of static and dynamic lower limb mechanics as well as associated risk factors. In the following chapter the most common disorders are thoroughly discussed with special attention to the underlying injury mechanisms, diagnostics, and therapeutic management.


Patellofemoral pain Patellar tendinopathy Patellar tendon Infrapatellar fat pad Hoffa fat pad Plica injuries Running Cycling Swimming Triathlon 


  1. 1.
    Andersen CA, et al. High prevalence of overuse injury among iron-distance triathletes. Br J Sports Med. 2013;47(13):857–61.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Egermann M, et al. Analysis of injuries in long-distance triathletes. Int J Sports Med. 2003;24(4):271–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Korkia PK, Tunstall-Pedoe DS, Maffulli N. An epidemiological investigation of training and injury patterns in British triathletes. Br J Sports Med. 1994;28(3):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tuite MJ. Imaging of triathlon injuries. Radiol Clin N Am. 2010;48(6):1125–35.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Clements K, Yates B, Curran M. The prevalence of chronic knee injury in triathletes. Br J Sports Med. 1999;33(3):214–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    van Gent RN, et al. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41(8):469–80.. discussion 80PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Clarsen B, Krosshaug T, Bahr R. Overuse injuries in professional road cyclists. Am J Sports Med. 2010;38(12):2494–501.PubMedCrossRefGoogle Scholar
  8. 8.
    Piotrowska SE, et al. Lower extremity and spine pain in cyclists. Ann Agric Environ Med. 2017;24(4):654–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Kannus P, et al. Computerized recording of visits to an outpatient sports clinic. Am J Sports Med. 1987;15(1):79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Taunton JE, et al. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hall R, et al. Sport specialization’s association with an increased risk of developing anterior knee pain in adolescent female athletes. J Sport Rehabil. 2015;24(1):31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Myer GD, et al. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118–22.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rathleff MS, et al. Exercise during school hours when added to patient education improves outcome for 2 years in adolescent patellofemoral pain: a cluster randomised trial. Br J Sports Med. 2015;49(6):406–12.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lankhorst NE, et al. Factors that predict a poor outcome 5-8 years after the diagnosis of patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2016;50(14):881–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nimon G, et al. Natural history of anterior knee pain: a 14- to 20-year follow-up of nonoperative management. J Pediatr Orthop. 1998;18(1):118–22.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Crossley KM, et al. 2016 patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester. Part 2: recommended physical interventions (exercise, taping, bracing, foot orthoses and combined interventions). Br J Sports Med. 2016a;50(14):844–52.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br. 1976;58(3):287–90.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fulkerson JP, Shea KP. Disorders of patellofemoral alignment. J Bone Joint Surg Am. 1990;72(9):1424–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jacobson KE, Flandry FC. Diagnosis of anterior knee pain. Clin Sports Med. 1989;8:179–95.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Nunes GS, et al. Clinical test for diagnosis of patellofemoral pain syndrome: systematic review with meta-analysis. Phys Ther Sport. 2013;14(1):54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sinclair J. Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running. Clin Biomech (Bristol, Avon). 2014;29(4):395–9.CrossRefGoogle Scholar
  23. 23.
    Smith AD, Stroud L, McQueen C. Flexibility and anterior knee pain in adolescent elite figure skaters. J Pediatr Orthop. 1991;11(1):77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Doucette SA, Child DD. The effect of open and closed chain exercise and knee joint position on patellar tracking in lateral patellar compression syndrome. J Orthop Sports Phys Ther. 1996;23(2):104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Crossley KM, et al. 2016 patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures. Br J Sports Med. 2016b;50(14):839–43.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Barton CJ, et al. The ‘Best practice guide to conservative Management of Patellofemoral Pain’: incorporating level 1 evidence with expert clinical reasoning. Br J Sports Med. 2015;49(14):923–34.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rudavsky A, Cook J. Physiotherapy management of patellar tendinopathy (jumper’s knee). J Physiother. 2014;60(3):122–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Schwartz A, Watson JN, Hutchinson MR. Patellar tendinopathy. Sports Health. 2015;7(5):415–20.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cook JL, et al. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med. 2016;50(19):1187–91.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hotfiel T, et al. Nonoperative treatment of tendon injuries. Sports Orthop Traumatol. 2017;33(3):258–69.CrossRefGoogle Scholar
  31. 31.
    Malliaras P, et al. Patellar tendinopathy: clinical diagnosis, load management, and advice for challenging case presentations. J Orthop Sports Phys Ther. 2015;45(11):887–98.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kim SK, Kim MC. The affect on delayed onset muscle soreness recovery for ultrasound with bee venom. J Phys Ther Sci. 2014;26(9):1419–21.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mizuno S, et al. Wearing compression garment after endurance exercise promotes recovery of exercise performance. Int J Sports Med. 2016;37(11):870–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pearcey GE, et al. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Samim M, et al. MRI of anterior knee pain. Skelet Radiol. 2014;43(7):875–93.CrossRefGoogle Scholar
  36. 36.
    Cassel M, et al. Prevalence of Achilles and patellar tendinopathy and their association to intratendinous changes in adolescent athletes. Scand J Med Sci Sports. 2015;25(3):e310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    McAuliffe S, et al. Can ultrasound imaging predict the development of Achilles and patellar tendinopathy? A systematic review and meta-analysis. Br J Sports Med. 2016;50(24):1516–23.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cook JL, Purdam CR. The challenge of managing tendinopathy in competing athletes. Br J Sports Med. 2014;48(7):506–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rio E, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    van Ark M, et al. Do isometric and isotonic exercise programs reduce pain in athletes with patellar tendinopathy in-season? A randomised clinical trial. J Sci Med Sport. 2016;19(9):702–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Korakakis V, et al. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: a systematic review including quantification of patient-rated pain reduction. Br J Sports Med. 2018;52(6):387–407.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Olafsen NP, Herring SA, Orchard JW. Injectable corticosteroids in sport. Clin J Sport Med. 2018;28(5):451–6.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Dupley L, Charalambous CP. Platelet-rich plasma injections as a treatment for refractory patellar tendinosis: a meta-analysis of randomised trials. Knee Surg Relat Res. 2017;29(3):165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Crisp T, et al. High volume ultrasound guided injections at the interface between the patellar tendon and Hoffa’s body are effective in chronic patellar tendinopathy: a pilot study. Disabil Rehabil. 2008;30(20–22):1625–34.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Frizziero A, et al. Hyaluronic acid injections protect patellar tendon from detraining-associated damage. Histol Histopathol. 2015;30(9):1079–88.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Sunding K, et al. Sclerosing injections and ultrasound-guided arthroscopic shaving for patellar tendinopathy: good clinical results and decreased tendon thickness after surgery-a medium-term follow-up study. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2259–68.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fontanella CG, et al. Investigation of biomechanical response of Hoffa’s fat pad and comparative characterization. J Mech Behav Biomed Mater. 2017;67:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Stephen JM, et al. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella. Knee Surg Sports Traumatol Arthrosc. 2018;26:3515.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kohn D, Deiler S, Rudert M. Arterial blood supply of the infrapatellar fat pad. Anatomy and clinical consequences. Arch Orthop Trauma Surg. 1995;114(2):72–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Lapegue F, et al. Imaging of traumatic injury and impingement of anterior knee fat. Diagn Interv Imaging. 2016;97(7–8):789–807.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jarraya M, et al. MRI findings consistent with peripatellar fat pad impingement: how much related to patellofemoral maltracking? Magn Reson Med Sci. 2018;17(3):195–202.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hoffa A. The influence of the adipose tissue with regard to the pathology of the knee joint. J Am Med Assoc. 1904;43:795–6.CrossRefGoogle Scholar
  53. 53.
    Rooney A, et al. The surgical treatment of anterior knee pain due to infrapatellar fat pad pathology: a systematic review. Orthop Traumatol Surg Res. 2015;101(4):469–75.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jarraya M, et al. Is superolateral Hoffa's fat pad hyperintensity a marker of local patellofemoral joint disease? - the MOST study. Osteoarthr Cartil. 2017;25(9):1459–67.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skelet Radiol. 2004;33(8):433–44.CrossRefGoogle Scholar
  56. 56.
    Widjajahakim R, et al. Relationship of trochlear morphology and patellofemoral joint alignment to superolateral Hoffa fat pad edema on MR images in individuals with or at risk for osteoarthritis of the knee: the MOST study. Radiology. 2017;284(3):806–14.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Roemer FW, et al. Magnetic resonance imaging of Hoffa's fat pad and relevance for osteoarthritis research: a narrative review. Osteoarthr Cartil. 2016;24(3):383–97.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Al-Hadithy N, et al. Review article: plica syndrome of the knee. J Orthop Surg (Hong Kong). 2011;19(3):354–8.CrossRefGoogle Scholar
  59. 59.
    Vassiou K, et al. Synovial plicae of the knee joint: the role of advanced MRI. Postgrad Med J. 2015;91(1071):35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Schindler OS. The sneaky plica’ revisited: morphology, pathophysiology and treatment of synovial plicae of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):247–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee PYF, et al. Synovial plica syndrome of the knee: a commonly overlooked cause of anterior knee pain. Surg J (N Y). 2017;3(1):e9–e16.Google Scholar
  62. 62.
    Amatuzzi MM, Fazzi A, Varella MH. Pathologic synovial plica of the knee. Results of conservative treatment. Am J Sports Med. 1990;18(5):466–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    van Mechelen W, Hlobil H, Kemper HC. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med. 1992;14(2):82–99.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hotfiel T, Hotfiel KH, Gelse K, Engelhardt M, Freiwald J. The use of insoles in competitive sports - indications, effectiveness, sport specific treatment strategies. Sports Orthop Traumatol. 2016a;32(3):250–7.CrossRefGoogle Scholar
  65. 65.
    Hotfiel T, et al. Einlagenversorgung im Leistungssport – Indikationen, Wirkungsweise, sportspezifische Versorgungsstrategien. Sports Orthop Traumatol. 2016b;32(3):250–7.CrossRefGoogle Scholar
  66. 66.
    Nielsen RO, et al. Training errors and running related injuries: a systematic review. Int J Sports Phys Ther. 2012;7(1):58–75.PubMedPubMedCentralGoogle Scholar
  67. 67.
    FitzGibbon S, Vicenzino B, Sisto SA. Intervention at the foot-shoe-pedal Interface in competitive cyclists. Int J Sports Phys Ther. 2016;11(4):637–50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thilo Hotfiel
    • 1
    • 2
  • Martin Engelhardt
    • 2
  • Casper Grim
    • 2
  1. 1.Department of Orthopedic SurgeryFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Department of Trauma and Orthopedic SurgeryKlinikum OsnabrückOsnabrückGermany

Personalised recommendations