Advertisement

Altitude Training and Endurance Performance

  • Paul RobachEmail author
  • Carsten Lundby
Chapter

Abstract

Many endurance athletes use altitude training to improve their physical performance. In this chapter, we briefly present the main altitude training methods and we evaluate from the existing scientific data their potential effectiveness on endurance performance at sea level. Live high—train high (LHTH) at natural altitude has not been demonstrated to improve endurance performance, which contrasts with the method’s popularity, including among elite triathletes. Live high—train low (LHTL) at natural or simulated altitude has been quite extensively studied. However, this approach remains a controversial topic and robust evidence that LHTL increases endurance performance in athletes is lacking. Finally, evidence indicate that live low—train high (LLTH), generally implemented at simulated altitude, has no positive effect on endurance performance and may therefore not be recommended for triathletes. While recognizing the scientific controversies that exist regarding the effectiveness of altitude training on endurance performance, this review also provides practical recommendations to triathletes wishing to prepare at altitude.

Keywords

Hypoxia Triathlon Elite athlete Total red blood cell volume Iron 

Notes

Acknowledgements

The authors thank Benjamin Maze (National Technical Director of the French Triathlon Federation) for his expert advice.

References

  1. 1.
    Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA. 1987;257:2761–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Kanstrup IL, Ekblom B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exerc. 1984;16:256–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Jelkmann W, Lundby C. Blood doping and its detection. Blood. 2011;118:2395–404.CrossRefPubMedGoogle Scholar
  4. 4.
    Balke B, Nagle FJ, Daniels J. Altitude and maximum performance in work and sports activity. JAMA. 1965;194:646–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Solli GS, Tonnessen E, Sandbakk O. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Garvican L, Martin D, Quod M, Stephens B, Sassi A, Gore C. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 2012;22:95–103.CrossRefPubMedGoogle Scholar
  7. 7.
    Bonne TC, Lundby C, Jorgensen S, Johansen L, Mrgan M, Bech SR, Sander M, Papoti M, Nordsborg NB. Live high-train high increases hemoglobin mass in olympic swimmers. Eur J Appl Physiol. 2014;114:1439–49.CrossRefPubMedGoogle Scholar
  8. 8.
    Rodriguez FA, Iglesias X, Feriche B, Calderon-Soto C, Chaverri D, Wachsmuth NB, Schmidt W, Levine BD. Altitude training in elite swimmers for sea level performance (altitude project). Med Sci Sports Exerc. 2015;47:1965–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Lundby C, Robach P. Performance enhancement: what are the physiological limits? Physiology (Bethesda). 2015;30:282–92.Google Scholar
  10. 10.
    Friedmann-Bette B. Classical altitude training. Scand J Med Sci Sports. 2008;18(Suppl 1):11–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Adams WC, Bernauer EM, Dill DB, Bomar JB Jr. Effects of equivalent sea-level and altitude training on VO2max and running performance. J Appl Physiol. 1975;39:262–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol (1985). 2001;91:173–82.CrossRefGoogle Scholar
  13. 13.
    Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85:1448–56.CrossRefPubMedGoogle Scholar
  14. 14.
    Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med. 1992;13(Suppl 1):S209–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83:102–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Koistinen PO, Rusko H, Irjala K, Rajamaki A, Penttinen K, Sarparanta VP, Karpakka J, Leppaluoto J. EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med Sci Sports Exerc. 2000;32:800–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, McKenna MJ. Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001;173:275–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Lundby C, Calbet JA, Sander M, van Hall G, Mazzeo RS, Stray-Gundersen J, Stager JM, Chapman RF, Saltin B, Levine BD. Exercise economy does not change after acclimatization to moderate to very high altitude. Scand J Med Sci Sports. 2007;17:281–91.PubMedGoogle Scholar
  20. 20.
    Robach P, Hansen J, Pichon A, Meinild Lundby AK, Dandanell S, Slettalokken Falch G, Hammarstrom D, Pesta DH, Siebenmann C, Keiser S, Kerivel P, Whist JE, Ronnestad BR, Lundby C. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports. 2018;28:1636–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Robach P, Siebenmann C, Jacobs RA, Rasmussen P, Nordsborg N, Pesta D, Gnaiger E, Diaz V, Christ A, Fiedler J, Crivelli N, Secher NH, Pichon A, Maggiorini M, Lundby C. The role of haemoglobin mass on VO(2)max following normobaric ‘live high-train low’ in endurance-trained athletes. Br J Sports Med. 2012;46:822–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Millet GP, Faiss R, Pialoux V. Point: counterpoint: hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. J Appl Physiol. 2012;112:1783–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Coppel J, Hennis P, Gilbert-Kawai E, Grocott MP. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials. Extrem Physiol Med. 2015;4:2.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hauser A, Schmitt L, Troesch S, Saugy JJ, Cejuela-Anta R, Faiss R, Robinson N, Wehrlin JP, Millet GP. Similar hemoglobin mass response in hypobaric and normobaric hypoxia in athletes. Med Sci Sports Exerc. 2016;48:734–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39:107–27.CrossRefGoogle Scholar
  26. 26.
    Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1–25.CrossRefGoogle Scholar
  27. 27.
    Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39:1590–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Lundby C, Millet GP, Calbet JA, Bartsch P, Subudhi AW. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46:792–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Lundby C, Robach P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol. 2016;101:783–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Schmitt L, Willis SJ, Fardel A, Coulmy N, Millet GP. Live high-train low guided by daily heart rate variability in elite nordic-skiers. Eur J Appl Physiol. 2018;118:419–28.CrossRefPubMedGoogle Scholar
  31. 31.
    Bejder J, Andersen AB, Buchardt R, Larsson TH, Olsen NV, Nordsborg NB. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “live high-train low”: a double-blind placebo-controlled cross-over study. Eur J Appl Physiol. 2017;117:979–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Bejder J, Nordsborg NB. Specificity of “live high-train low” altitude training on exercise performance. Exerc Sport Sci Rev. 2018;46:129–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018;27:962–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports. 2008;18(Suppl 1):38–49.CrossRefPubMedGoogle Scholar
  35. 35.
    Robach P, Bonne T, Fluck D, Burgi S, Toigo M, Jacobs RA, Lundby C. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc. 2014;46:1936–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47:1651–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramos-Campo DJ, Martinez-Guardado I, Olcina G, Marin-Pagan C, Martinez-Noguera FJ, Carlos-Vivas J, Alcaraz PE, Rubio JA. Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scand J Med Sci Sports. 2018;28:2135–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Bartsch P, Dehnert C, Friedmann-Bette B, Tadibi V. Intermittent hypoxia at rest for improvement of athletic performance. Scand J Med Sci Sports. 2008;18(Suppl 1):50–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Brocherie F, Millet GP, Hauser A, Steiner T, Rysman J, Wehrlin JP, Girard O. “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc. 2015;47:2140–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports. 2007;17:588–94.CrossRefPubMedGoogle Scholar
  41. 41.
    Chapman RF, Karlsen T, Ge RL, Stray-Gundersen J, Levine BD. Living altitude influences endurance exercise performance change over time at altitude. J Appl Physiol (1985). 2016;120:1151–8.CrossRefGoogle Scholar
  42. 42.
    Carr AJ, Garvican-Lewis LA, Vallance BS, Drake AP, Saunders PU, Humberstone CE, Gore CJ. Training to compete at altitude: natural altitude or simulated live high: train low? Int J Sports Physiol Perform. 2019;14:509–17.Google Scholar
  43. 43.
    Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg NB, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C. “Live high - train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol. 2012;112:106–17.CrossRefPubMedGoogle Scholar
  44. 44.
    Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-adaptation: heat and cold adaptation to improve physiological and cellular responses to hypoxia. Sports Med. 2017;47:1751–68.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.CrossRefPubMedGoogle Scholar
  46. 46.
    Richalet JP, Gore CJ. Live and/or sleep high: train low, using normobaric hypoxia. Scand J Med Sci Sports. 2008;18(Suppl 1):29–37.CrossRefPubMedGoogle Scholar
  47. 47.
    Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol (1985). 2016;121:352–5.CrossRefGoogle Scholar
  48. 48.
    Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol (1985). 2014;116:837–43.CrossRefGoogle Scholar
  49. 49.
    Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One. 2015;10:e0135120.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Garvican-Lewis LA, Vuong VL, Govus AD, Peeling P, Jung G, Nemeth E, Hughes D, Lovell G, Eichner D, Gore CJ. Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med Sci Sports Exerc. 2018;50:1669–78.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Friedmann B, Jost J, Rating T, Weller E, Werle E, Eckardt KU, Bartsch P, Mairbaurl H. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int J Sports Med. 1999;20:78–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ecole Nationale des Sports de MontagneSite de l’Ecole Nationale de Ski et d’AlpinismeChamonixFrance
  2. 2.Center for Physical Activity ResearchUniversity Hospital of CopenhagenCopenhagenDenmark

Personalised recommendations