Advertisement

Quantifying the Training Load in Triathlon

  • Roberto CejuelaEmail author
  • Jonathan Esteve-Lanao
Chapter

Abstract

There are different indices of training stress of varying complexity to quantification training load. Examples include the training impulse (TRIMP), the session (rating of perceived exertion [RPE]), Lucia’s TRIMP or summated zone score. But the triathlon, a sport to be combined where there are interactions between different segments, is a complication when it comes to quantify the training. The aim of this chapter is to propose a scale to quantify the training load in triathlon simple application.

Keywords

Performance ECOs Training zones 

References

  1. 1.
    Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, Gabbett TJ, Coutts AJ, Burgess DJ, Gregson W, Cable NT. Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform. 2017;12(Suppl 2):S2161–70.  https://doi.org/10.1123/IJSPP.2017-0208.CrossRefPubMedGoogle Scholar
  2. 2.
    Foster C, Florhaug JA, Frankiln J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109–15.PubMedGoogle Scholar
  3. 3.
    Edwards S. The heart rate monitor book. Sacramento, CA: Fleet Feet Press; 1993.Google Scholar
  4. 4.
    Lucía A, Hoyos J, Carvajal A, Chicharro JL. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med. 1999;20:167–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Iliuta G, Dimistrescu C. Criterii medicale si psihice ale evaluarii si conducerii antrenamentului atletitor. Sportul de Performanta. 1978;53:49–64.Google Scholar
  6. 6.
    Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC. Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc. 1996;28(2):251–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Banister EW, Calvert TW. Planning for future performance: implications for long term training. Can J Appl Sport Sci. 1980;5(3):170–6.PubMedGoogle Scholar
  8. 8.
    Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol. 1990;69(3):1171–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Hayes PR, Quinn MD. A mathematical model for quantifying training. Eur J Appl Physiol. 2009;106:839–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Allen H, Coggan A. Training and racing with a power meter. Boulder, CO: Velopress; 2006.Google Scholar
  11. 11.
    Bompa T. Periodización. Teoría y metodología del entrenamiento. Barcelona: Hispano-Europea; 2003.Google Scholar
  12. 12.
    Cejuela-Anta R, Esteve-Lanao J. Training load quantification in triathlon. J Hum Sport Exerc. 2011;6:1–15.CrossRefGoogle Scholar
  13. 13.
    Swart J, Lamberts RP, Derman W, Lambert MI. Effects of high-intensity training by heart rate or power in well-trained cyclists. J Strength Cond Res. 2009;23(2):619–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.CrossRefGoogle Scholar
  15. 15.
    Chatard JC, Wilson B. Drafting distance in swimming. Med Sci Sports Exerc. 2003;35:1176–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Fixx JF. The complete book of running. New York, NY: Random House; 1977.Google Scholar
  17. 17.
    Lamb DH. Physiology of exercise: responses and adaptation. New York, NY: MacMillan Publishing Company; 1984.Google Scholar
  18. 18.
    McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition and human performance. Philadelphia, PA: Lea & Febiger; 1986.Google Scholar
  19. 19.
    Miyashita M. Method of calculating mechanical power in swimming the breast stroke. Res Q. 1974;45:128–37.PubMedGoogle Scholar
  20. 20.
    Pendergast D, Zamparo P, di Prampero PE, Capelli C, Cerretelli P, Termin A, Craig A Jr, Bushnell D, Paschke D, Mollendorf J. Energy balance of human locomotion in water. Eur J Appl Physiol. 2003;90:377–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Whitt FR, Wilson DG. Bicycling science. 2nd ed. Cambridge, MA: MIT Press; 1982.Google Scholar
  22. 22.
    Zamparo P, Gatta G, Pendergast D, Capelli C. Active and passive drag: the role of trunk incline. Eur J Appl Physiol. 2009;106:195–205.CrossRefPubMedGoogle Scholar
  23. 23.
    Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:32–53.Google Scholar
  24. 24.
    Stepto NK, Martin DT, Fallon KE, Hawley JA. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc. 2001;33:303–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2 max. Int J Sports Med. 2000;21:96–101.CrossRefPubMedGoogle Scholar
  26. 26.
    Billat V. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med. 2001;31:13–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol. 2000;81:188–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Stepto NK, Hawley JA, Dennis SC, Hopkins WG. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc. 1999;31:736–41.CrossRefPubMedGoogle Scholar
  29. 29.
    MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol. 1998;84:2138–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Babineau C, Leger L. Physiological response of 5/1 intermittent aerobic exercise and its relationship to 5 km endurance performance. Int J Sports Med. 1997;18:13–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34:1801–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc. 1996;28:1427–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Polishuk DA. El ciclismo : preparación, teoría y práctica. 1st ed. Barcelona: Paidotribo; 1992.Google Scholar
  34. 34.
    Beneke R. Transitioning distance specialists (1 hour) to long metric events. May 27th–28th. USSF Coaches Seminar. Salt Lake City; 2006.Google Scholar
  35. 35.
    Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003;33:407–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol (1985). 1989;67(1):453–65.CrossRefGoogle Scholar
  37. 37.
    McCole SD, Claney K, Conte JC. Energy expenditure during bicycling. J Appl Physiol. 1990;68:748–53.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hue O, Le Gallais D, Chollet D, Boussana A, Prefaut C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur J Appl Physiol Occup Physiol. 1998;77(1–2):98–105.PubMedGoogle Scholar
  39. 39.
    Millet GP, Millet GY, Hofmann MD, Candau RB. Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level. Int J Sports Med. 2000;21(2):127–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Millet GO, Vleck VE. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Br J Sports Med. 2000;34(5):384–90.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vercruyssen F, Brisswalter J, Hausswirth C, Bernard T, Bernard O, Vallier JM. Influence of cycling cadence on subsequent running performance in triathletes. Med Sci Sports Exerc. 2002;34:530–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Battista RA, Foster C, Andrew J, Wright G, Lucia A, Porcari JP. Physiologic responses during indoor cycling. J Strength Cond Res. 2008;22:1236–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Bassett DR, Flohr J, Duey WJ. Metabolic responses to drafting during front crawl swimming. Med Sci Sports Exerc. 1991;23:744–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Sweet TW, Foster C, McGuigan MR, et al. Quantitation of resistance training using the session rating of perceived exertion method. J Strength Cond Res. 2004;18(4):796–802.PubMedGoogle Scholar
  45. 45.
    Naclerio F. El volumen en los entrenamientos de fuerza contra resistencias. Revista Digital - Buenos Aires - Año 10 - N° 74; 2004. http://www.efdeportes.com/.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department-Section of Physical Education and SportUniversity of AlicanteAlicanteSpain
  2. 2.All in Your Mind Training SystemMéridaMéxico

Personalised recommendations