Advertisement

Endurance Anemia, Relevance to Triathlon

  • Gaetano CairoEmail author
Chapter

Abstract

Since anemia limits the delivery of oxygen to exercising muscle, avoiding anemia is essential for triathletes to maintain or improve athletic performance. However, exercise-associated conditions, such as iron deficiency, hypoxia, and inflammation, can often be pathogenetically linked to sports anemia. This chapter summarizes recent advances showing the relevance of anemia for physical exercise and athletic performance. In particular, the alterations in the control of iron homeostasis and the relevance of iron-deficient anemia to sports physiology are described.

Keywords

Anemia Hemoglobin Exercise Endurance Muscle Hepcidin Iron 

Notes

Conflict of Interest Statement

No conflicts of interest are declared by the author.

References

  1. 1.
    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.CrossRefGoogle Scholar
  2. 2.
    Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123:615–24.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jacobs RA, Rasmussen P, Siebenmann C, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol. 2011;111:1422–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Kargotich S, Goodman C, Keast D, Morton AR. The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med. 1998;26:101–17.CrossRefPubMedGoogle Scholar
  5. 5.
    Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol. 2017;123:957–66.CrossRefGoogle Scholar
  6. 6.
    Eichner ER. Fatigue of anemia. Nutr Rev. 2001;59:517–9.Google Scholar
  7. 7.
    Woodson RD, Wills RE, Lenfant C. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol Respir Environ Exerc Physiol. 1978;44:36–43.PubMedGoogle Scholar
  8. 8.
    Lundby C, Robach P. Performance enhancement: what are the physiological limits? Physiology (Bethesda). 2015;30:282–92.Google Scholar
  9. 9.
    Kanstrup IL, Ekblom B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exerc. 1984;16:256–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Heinicke K, Wolfarth B, Winchenbach P, Biermann B, Schmid A, Huber G, et al. Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med. 2001;22:504–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Schuler B, Arras M, Keller S, et al. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc Natl Acad Sci U S A. 2010;107:419–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Parks RB, Hetzel SJ, Brooks MA. Iron deficiency and anemia among collegiate athletes: a retrospective chart review. Med Sci Sports Exerc. 2017;49:1711–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47:1721–37.CrossRefGoogle Scholar
  14. 14.
    Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA. Footstrike is the major cause of hemolysis during running. J Appl Physiol. 2003;94:38–42.CrossRefGoogle Scholar
  15. 15.
    Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab. 2013;17:319–28.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cairo G, Bernuzzi F, Recalcati S. A precious metal: iron, an essential nutrient for all cells. Genes Nutr. 2006;1:25–39.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buratti P, Gammella E, Rybinska I, Cairo G, Recalcati S. Recent advances in iron metabolism: relevance for health, exercise and performance. Med Sci Sports Exerc. 2015;47:1596–604.CrossRefPubMedGoogle Scholar
  18. 18.
    Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry. 2012;51:5705–24.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal. 2010;13:1593–616.CrossRefPubMedGoogle Scholar
  21. 21.
    Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117:4425–33.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao N, Zhang AS, Enns CA. Iron regulation by hepcidin. J Clin Invest. 2013;123:2337–43.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood. 2014;124:479–82.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mochel F, Knight MA, Tong WH, et al. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet. 2008;82:652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18:1208–46.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rodriguez NR, Di Marco NM, Langley S, American Dietetic Association; Dietitians of Canada; American College of Sports Medicine. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Reinke S, Taylor WR, Duda GN, et al. Absolute and functional iron deficiency in professional athletes during training and recovery. Int J Cardiol. 2012;156:186–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Hinton PS. Iron and the endurance athlete. Appl Physiol Nutr Metab. 2014;39:1012–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Crouter SE, DellaValle DM, Haas JD. Relationship between physical activity, physical performance, and iron status in adult women. Appl Physiol Nutr Metab. 2012;37:697–705.CrossRefPubMedGoogle Scholar
  32. 32.
    Haas JD, Brownlie T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131:676S–88S.CrossRefPubMedGoogle Scholar
  33. 33.
    DellaValle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12:234–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Pasricha SR, Low M, Thompson J, Farrell A, De-Regil LM. Iron supplementation benefits physical performance in women of reproductive age: a systematic review and meta-analysis. J Nutr. 2014;144:906–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131:568S–79S.CrossRefPubMedGoogle Scholar
  36. 36.
    Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118:3222–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Beutler E, Larsh SE, Gurney CW. Iron therapy in chronically fatigued, nonanemic women: a double-blind study. Ann Intern Med. 1960;52:378–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Willis WT, Gohil K, Brooks GA, Dallman PR. Iron deficiency: improved exercise performance within 15 hours of iron treatment in rats. J Nutr. 1990;120:909–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood. 2007;109:4724–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Coates A, Mountjoy M, Burr J. Incidence of iron deficiency and iron deficient anemia in elite runners and triathletes. Clin J Sport Med. 2017;27:493–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Roecker L, Meier-Buttermilch R, Brechtel L, Nemeth E, Ganz T. Iron-regulatory protein hepcidin is increased in female athletes after a marathon. Eur J Appl Physiol. 2005;95:569–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Auersperger I, Knap B, Jerin A, et al. The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int J Sport Nutr Exerc Metab. 2012;22:55–63.CrossRefPubMedGoogle Scholar
  44. 44.
    Troadec MB, Lainé F, Daniel V, et al. Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism. Eur J Appl Physiol. 2009;106:435–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110:877–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Kong WN, Gao G, Chang YZ. Hepcidin and sports anemia. Cell Biosci. 2014;4:19.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Domínguez R, Sánchez-Oliver AJ, Mata-Ordoñez F, Feria-Madueño A, Grimaldi-Puyana M, López-Samanes Á, Pérez-López A. Effects of an acute exercise bout on serum hepcidin levels. Nutrients 2018;10(2).  https://doi.org/10.3390/nu10020209.
  48. 48.
    Zourdos MC, Sanchez-Gonzalez M, Mahoney SE. A brief review: the implications of iron supplementation for marathon runners on health and performance. J Strength Cond Res. 2015;29(2):559–65.CrossRefPubMedGoogle Scholar
  49. 49.
    Pedlar CR, Brugnara C, Bruinvels G, Burden R. Iron balance and iron supplementation for the female athlete: a practical approach. Med Sci Sports Exerc. 2017;49:1711–5.CrossRefGoogle Scholar
  50. 50.
    De Matos LD, Azevedo LF, Vieira ML, et al. The use of exogenous iron by professional cyclists pervades abdominal organs but not the heart. Int J Cardiol. 2013;167:2341–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Reardon TF, Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol. 2009;94:720–30.CrossRefPubMedGoogle Scholar
  52. 52.
    Woods A, Garvican-Lewis LA, Saunders PU, et al. Four weeks of IV iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS One. 2014;9(9):e108042.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly

Personalised recommendations