Avoiding Mistakes in Medical High-Tech Treatments and E-Commerce Applications – a Salutary UX-Research Innovation

  • Christina MiclauEmail author
  • Oliver Gast
  • Julius Hertel
  • Anja Wittmann
  • Achim Hornecker
  • Andrea Mueller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11588)


Medical devices accompany our everyday life and come across in situations of worse condition, in significant moments concerning the health or during routine checkups. To ensure flawless operations and error-free results it is essential to test applications and devices. High risks for patient’s health come with operating errors [33] so that the presented research project, called Professional UX, identifies signals and irritations caused by the interaction with a certain device by analyzing mimic, voice and eye tracking data during user experience tests. Besides, this paper will provide information on typical errors of interactive applications which are based on an empirical lab-based survey and the evaluated results achieved. The pictured proceeding of user experience tests and the following analysis can also be applied to other fields and serves as a support for the optimization of products and systems.


Medical technology User experience Operation errors High risk systems 


  1. 1.
    Sarodnick, F., Brau, H.: Methoden der Usability Evaluation, 2nd edn. s1, pp. 119–191. Verlag Hans Huber (2011)Google Scholar
  2. 2.
    Mueller, A., Gast, O.: Customer experience tracking – Online-Kunden conversionwirksame Erlebnisse bieten durch gezieltes Emotionsmanagement. In: Keuper, F., et al (eds.) Daten-Management und Daten-Services – Next Level, Berlin, pp. 313–343 (2014)Google Scholar
  3. 3.
    Thuering, M., Mahlke, S.: Usability, aesthetics and emotions in human–technology interaction. Int. J. Psychol. 42(4), 253–264 (2007). Scholar
  4. 4.
    Vogel, I.: Emotionen im Kommunikationskontext. In: Six, U., Gleich, U., Gimmler, R. (eds.) Kommunikationspsychologie – Medienpsychologie. Lehrbuch (Anwendung Psychologie, 1st edn.), pp. 135–157. Weinheim, Beltz (2007)Google Scholar
  5. 5.
    Schmidt-Atzert, L., et al.: Lehrbuch der Emotionspsychologie. Kohlhammer, Stuttgart (1996)Google Scholar
  6. 6.
    Ekman, P., Friesen, W.: Manual for the Facial Action Coding System, Palo Alto (1977)Google Scholar
  7. 7.
    Noldus: FaceReader: Project Analysis Module. Accessed 21 Oct 2017
  8. 8.
    Paul Ekman Group: Facial Action Coding System (FACS) FAQ - Paul Ekman Group. Accessed 21 Oct 2017
  9. 9.
    Argyle, M.: Körpersprache & Kommunikation. Nonverbaler Ausdruck und soziale Interaktion, 10th edn., p. 155. Junfermann, Paderborn (2013)Google Scholar
  10. 10.
    Jo, M.Y., Stautmeister, A.: Don’t make me think aloud! – Lautes Denken mit Eye-Tracking auf dem Prüfstand. In: Brau, H., et al. (eds.) Usability Professionals 2011, Stuttgart, pp. 172–177 (2011)Google Scholar
  11. 11.
    Norman, D.: Emotion and design: attractive things work better. Interact. Mag. ix(4), 36–42 (2002)CrossRefGoogle Scholar
  12. 12.
    Wong, E.: How to Prevent Negative Emotions in the User Experience of Your Product. Accessed 31 Jan 2019 (2017)
  13. 13.
    Paunovic, G.: The Bottom Line: Why Good UX Design Means Better Business. Accessed 31 Jan 2019 (2017)
  14. 14. Benefits of User-Centered Design. Accessed 30 Jan 2019
  15. 15.
    Stern, T.: Why User Experience Is the Best ROI Strategy. Accessed 30 Jan 2019 (2017)
  16. 16.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  17. 17.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 2001, p. I-I (2001)Google Scholar
  18. 18.
    Ren, S., et al.: Face alignment at 3000 FPS via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)Google Scholar
  19. 19.
    Werner, P., Saxen, F., Al-Hamadi, A.: Handling data imbalance in automatic facial action intensity estimation. FERA, p. 26 (2015)Google Scholar
  20. 20.
    Eyben, F., et al.: The geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Trans. Affect. Comput. 7(2), 190–202 (2016)CrossRefGoogle Scholar
  21. 21.
    Eyben, F. et al.: Towards a standard set of acoustic features for the processing of emotion in speech. In: Proceedings of Meetings on Acoustics (2010)Google Scholar
  22. 22.
    Schuller, B., Steidl, S., Batlinger, A.: The INTERSPEECH 2009 emotion challenge. In: Proceedings of Interspeech, ISCA (2009)Google Scholar
  23. 23.
    Schuller, B., et al.: The INTERSPEECH 2011 speaker state challenge. In: Proceedings of Interspeech (2011)Google Scholar
  24. 24.
    Burkhardt, F., et al.: A database of german emotional speech. In: Proceedings of Interspeech (2005)Google Scholar
  25. 25.
    Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)Google Scholar
  26. 26.
    Imai, S., Kobayashi, T., et al.: Speech Signal Processing Toolkit. Accessed 29 Jan 2019
  27. 27.
    Gast, O.: User Experience im E-Commerce. Messung von Emotionen bei der Nutzung interaktiver Anwendungen. Springer Gabler, Wiesbaden (2018). Dissertation Pädagogische Hochschule Freiburg, ISBN 978-3-658-22484-4, pp. 18–24, 30–46, 131–134CrossRefGoogle Scholar
  28. 28.
    Reetz, H.: Artikulatorische und akustische Phonetik, 2nd edn., pp. 1–30, 125–137f. WWT Wissenschaftlicher Verlag, Trier (2003)Google Scholar
  29. 29.
    Carstensen, K.-U.: Computerlinguistik und Sprachtechnologie. Eine Einführung, 3rd edn., pp. 176–194. Spektrum, Akad. Verlag, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Schwertfeger, B.: Personalauswahl per Sprachtest. In: Personalmagazin, no. 12, pp. 32–34. Accessed 21 Oct 2017(2015)
  31. 31.
    Schneider-Stickler, B., Bigenzahn, W.: Stimmdiagnostik. Ein Leitfaden für die Praxis, 2nd edn., pp. 30–34. Springer, Dordrecht (2013)CrossRefGoogle Scholar
  32. 32.
    Schwender, C.: Medien und Emotionen, p. 34. Springer Fach-medien, Wiesbaden (2007)Google Scholar
  33. 33.
  34. 34.
    Dain, S.: Normal accidents: human error and medical equipment design. Hear. Surg. Forum 5(3) (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christina Miclau
    • 1
    Email author
  • Oliver Gast
    • 2
  • Julius Hertel
    • 3
  • Anja Wittmann
    • 3
  • Achim Hornecker
    • 3
  • Andrea Mueller
    • 2
  1. 1.Hochschule Offenburg, University of Applied SciencesOffenburgGermany
  2. 2.User Interface Design GmbHLudwigsburgGermany
  3. 3.Dr. Hornecker Software-Entwicklung und IT-DienstleistungenFreiburg im BreisgauGermany

Personalised recommendations