Advertisement

Romanian Danube River Floodplain Functionality Assessment

  • Cristian TrifanovEmail author
  • Alin Mihu-Pintilie
  • Marian Tudor
  • Marian Mierlă
  • Mihai Doroftei
  • Silviu Covaliov
Chapter
Part of the Springer Water book series (SPWA)

Abstract

The floodplain of the Lower Danube was formed by the complex action of erosion and river accumulation, under the influence of the ascension trend of the river riverbed during the Holocene and the oscillation of the water levels and discharges. Almost full embankment and the construction of non-submersible dams have affected both the hydro-geomorphological system and the local and regional topo-climates, which is a pronounced phenomenon in the conditions of global climate changes. All these alterations have led to a significant transformation of the ecosystems. Transforming these ecosystems of the Lower Danube floodplain into dry land ecosystems has reduced their ecological, recreational, aesthetic and educational functions to only one function: the economic one. The natural capital of the Lower Danube floodplain has a productive capacity that must be known by its functional cells in order to avoid degradation, destruction under anthropogenic impact and to favor the sustainable use of its support capacity. Ensuring sustainable socio-economic development in the Lower Danube floodplain area is also based on knowledge of ecological sustainability, ecosystem integrity, environmental sustainability, ecological, and regional ecosystem balance. The ecological and economic resizing program of the managed areas of the Lower Danube floodplain was designed and launched to assist the Romanian Government in the long-term strategic planning process, to achieve the objectives of the Water Framework Directive and to effectively implement prevention, protection and mitigation of floods, mentioned in the National Strategy for Flood Risk Management. In this sense, a thorough and complex study, based on LiDAR measurements, hydraulic modeling and economic assessment, was conducted to evaluate the functionality of the floodplain as a whole and within agricultural units to determine the equipotential areas for flood-free future and sustainable development of the region. Thus, there were identified three types of areas: the first type represents the areas with only agricultural potential, the second type are, the areas with potential to be ecologically restored (to establish the natural flow of energy and circulation of matter) and the third one is a combination of the first two.

Keywords

Economic activities Ecosystem balance Equipotential areas Floodplain Lower danube 

Notes

Acknowledgements

This chapter was compiled within the project “Ecological and Economic Resizing on Romanian Sector of Danube’s Floodplain” implemented between 2006 and 2008 for Ministry of Environment as beneficiary. The study was carried out by Danube Delta National Institute for Research and Development (D.D.N.I.) along with National Institute of Research and Development for Land Reclamation (I.S.P.I.F.), National Institute of Hydrology and Water Management, (I.N.H.G.A.), and EnviroScopy, from Romania and W.W.F.—Karlsruhe University from Germany. A project would not work without the support of a functioning partnership. Thus, we thank all our project partners and their respective teams, the whole lead partner team with special thanks to Dr. Eng. Iulian Nichersu—project leader, Dr. Eng. Ion Grigoras—LiDAR data processing and other GIS related products and Eng. Adrian Constantinescu—hydraulic modeling.

References

  1. 1.
    Romanescu G (1996) Delta Dunarii. Studiu morfohidrografic. Editura Corson, IasiGoogle Scholar
  2. 2.
    Romanescu G (2003) Hidrologie generala. Editura Terra Nostra, IasiGoogle Scholar
  3. 3.
    Romanescu G (2003) Morpho-hydrographical evolution of the Danube Delta, I, aquatic surfaces and inner lands. Editura PIM, IasiGoogle Scholar
  4. 4.
    Romanescu G (2005) Morpho-hydrographical evolution of the Danube Delta, II, management of water resources and coastline evolution. Land use and the ecological consequences. Editura Terra Nostra, IasiGoogle Scholar
  5. 5.
    Romanescu G (2006) Complexul lagunar Razim-Sinoie. Studiu morfohidrografic. Editura Universitatii „Alexandru Ioan Cuza”, IasiGoogle Scholar
  6. 6.
    Romana Academia (1967) Limnologia sectorului romanesc al Dunarii. Studiu Monografic. Editura Academiei Republicii Socialiste Ramania, BucurestiGoogle Scholar
  7. 7.
    Diaconu C, Nichiforov ID (1963) Zona de varsare a Dunarii. Monografia hidrologica. Editura Institutului de Studii si Cercetari Hidrotehnice, BucurestiGoogle Scholar
  8. 8.
    Apostu M, Tantaru G, Vieriu M, Bibire N, Panainte AD (2018) Study of the presence of lead in a series of foods of plant origin. Rev Chim (Bucharest) 69(5):1223–1225Google Scholar
  9. 9.
    Banaduc D, Rey S, Trichkova T, Lenhardt M, Curtean-Banaduc A (2016) The Lower Danube River-Danube Delta–North West Black Sea: a pivotal area of major interest for the past, present and future of its fish fauna—a short review. Sci Total Environ 545–546:137–151CrossRefGoogle Scholar
  10. 10.
    Buzea E (2011) Flooded areas and their importance in maintaining biodiversity. Meadows lower Danube. J Wetl Biodivers 1:23–46Google Scholar
  11. 11.
    Čech M, Čech P (2013) The role of floods in the lives of fish-eating birds: predators loss or benefit? Hydrobiologia 717(1):203–211CrossRefGoogle Scholar
  12. 12.
    Cical E, Mihali C, Mecea M, Dumuta A, Dippong T (2016) Considerations on the relative efficacy of aluminium sulphates versus polyaluminium chloride for improving drinking water quality. Stud Univ Babes-Bolyai, Chem 61(2):225–238Google Scholar
  13. 13.
    Ciomos A, Imre L, Mihaiescu T, Mihaiescu R (2015) Perspectives on the responsible consumption of the water resources in Romania. Pro Environ 8:606–615Google Scholar
  14. 14.
    Danu M, Messager E, Carozza JM, Carozza L, Bouby L, Philibert S, Anderson P, Burens A, Micu C (2018) Phytolith evidence of cereal processing in the Danube Delta during the Chalcolithic period. Quat IntGoogle Scholar
  15. 15.
    Kahit FZ, Zaoui L, Danu MA, Romanescu G, Benslama M (2017) A new vegetation history documented by pollen analysis and C14 dating in the alder of Ain Khiar—El Kala wet complex, Algeria. Int J Biosci 11(6):192–199CrossRefGoogle Scholar
  16. 16.
    Merecki N, Agič R, Šunić L, Milenković L, Ilić ZS (2015) Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bull 24(11c):4212–4219Google Scholar
  17. 17.
    Omer I (2016) Water quality assessment of the groundwater body RODL01 from North Dobrogea. Rev Chim (Bucharest) 67(12):2405–2408Google Scholar
  18. 18.
    Raischi MC, Oprea L, Deak G, Badilita A, Tudor M (2016) Comparative study on the use of new sturgeon migration monitoring systems on the lower Danube. Environ Eng Manag J 15(5):1081–1085CrossRefGoogle Scholar
  19. 19.
    Trifanov C, Romanescu G, Tudor M, Grigoras I, Doroftei M, Covaliov S, Mierla M (2018) Anthropisation degree of coastal vegetation areas in Danube Delta biosphere reserve. J Environ Prot Ecol 19(2):539–546Google Scholar
  20. 20.
    Wu S, Wiessner A, Braeckevelt M, Kappekmeyer U, Ding R, Müller J, Kuschk P (2013) Influence of nitrate load on sulfur transformations in the rhizosphere of Juncus effusus in laboratory-scale constructed wetlands treating artificial domestic wasewater. Environ Eng Manag J 12(3):565–573CrossRefGoogle Scholar
  21. 21.
    Adopo KL, Romanescu G, N’Guessan AI, Stoleriu C (2014) Relations between man and nature and environmental dynamics at the mouth of the Komoé river, Grand-Bassam (Ivory Coast). Carpathian J Earth Environ Sci 9(4):137–148Google Scholar
  22. 22.
    Adopo LK, Romanescu G, N’Guessan AY, Stoleriu C (2014) Nature and dynamic of sediments at the mouth of Komoé river (Ivory Coast). Lakes, Reserv Ponds 8(1):28–41Google Scholar
  23. 23.
    Adopo KL, N’Guessan MY, Sandu AV, Romanescu G, Sandu IG (2016) The spatial distribution and characterization of sediments and the bottom morphology of the hydroelectric lake in Ayamé 2 (Ivory Coast). Int J Conserv Sci 7(2):567–578Google Scholar
  24. 24.
    Romanescu G (2013) Alluvial Transport Processes and the Impact of Anthropogenic Intervention on the Romanian Littoral of the Danube delta. Ocean Coast Manag 73:31–43CrossRefGoogle Scholar
  25. 25.
    Romanescu G (2016) Tourist exploitation of archaeological sites in the Danube Delta biosphere reserve area (Romania). Int J Conserv Sci 7(3):683–690Google Scholar
  26. 26.
    Romanescu G, Mihu-Pintilie A, Carboni D, Stoleriu CC, Cimpianu CI, Trifanov C, Pascal ME, Ghindaoanu BV, Ciurte DL, Moisii M (2018) The tendencies of hydraulic energy during XXI century between preservation and economic development. Case study: Fagaras Mountains, Romania. Carpathian J Earth Environ Sci 13(2):489–504CrossRefGoogle Scholar
  27. 27.
    Romanescu G (2013) Geoarchaeology of the ancient and medieval Danube Delta: Modeling environmental and historical changes. A review. Quat Int 293:231–244CrossRefGoogle Scholar
  28. 28.
    Galatchi LD (2008) Urban water resources management in Romania - perspectives for the sustainable development in order to supply water to human settlements. In: Hlavinek P, Bonacci O, Marsalek J, Mahrikova I (eds). Dangerous pollutants (xenobiotics) in urban water cycle, Springer, pp 23–34Google Scholar
  29. 29.
    Zavoianu I (1993) Romania’s water resources and their use. GeoJournal 29(1):19–30CrossRefGoogle Scholar
  30. 30.
    Romanescu G, Gabriela Romanescu, Stoleriu C, Ursu A (2008) Inventarierea si tipologia zonelor umede si apelor adanci din Podisul Moldovei. Editura Terra Nostra, IasiGoogle Scholar
  31. 31.
    Romanescu G (2015) Managementul apelor. Amenajarea hidrotehnica a bazinelor hidrografice si a zonelor umede. Editura Terra Nostra, IasiGoogle Scholar
  32. 32.
    Romanescu G (2018) Inundatiile: calamitate sau normalitate? Studii de caz: bazinele hidrografice Prut si Siret (Romania). Editura Transversal, TargovisteGoogle Scholar
  33. 33.
    Burtea MC, Sandu IG, Cioromele GA, Bordei M, Ciurea A, Romanescu G (2015) Sustainable exploitation of ecosystems on the Big Island of Braila. Rev Chim (Bucharest) 66(5):621–627Google Scholar
  34. 34.
    Burtea MC, Ciurea A, Bordei M, Romanescu G, Sandu AV (2015) Development of the Potential of Ecological Agriculture in the Village Ciresu, County of Braila. Rev Chim (Bucharest) 66(8):1222–1226Google Scholar
  35. 35.
    Romanescu G, Cojocaru I (2010) Hydrogeological considerations on the western sector of the Danube Delta—a case study for the Caraorman and Saraturile fluvial-marine levees (with similarities for the Letea levee). Environ Eng Manag J 9(6):795–806CrossRefGoogle Scholar
  36. 36.
    Romanescu G, Purice C (2013) The sector of fluvial limans in the southwest of Dobruja—genesis, morphographic and morphometric features. Air and water. Components of the environment, Presa Universitara Clujeana, pp 47–54Google Scholar
  37. 37.
    Romanescu G, Mihu-Pintilie A, Trifanov C, Stoleriu CC (2018) The variations of physico-chemical parameters during summer in Lake Erenciuc from the Danube Delta (Romania). Limnol Rev 18(1):21–29CrossRefGoogle Scholar
  38. 38.
    Antipa G (1910) Regiunea inundabila a Dunarii. Starea ei actuala si mijloacele de a o pune in valoare. Instit. de Arte Grafice Carol Gobl, BucurestiGoogle Scholar
  39. 39.
    Antipa G (1912) Regiunea inundabila a Dunarii. An. Inst. Geol. Rom., IIGoogle Scholar
  40. 40.
    Antipa G (1913) Trei memorii privitoare la ameliorarea Regiunei inundabile a Dunarei. BucurestiGoogle Scholar
  41. 41.
    Antipa G (1916) Pescaria si pescuitul in Romania. Publicatiile Fundatiei Vasile Adamachi. Academia Romana, BucurestiGoogle Scholar
  42. 42.
    Antipa G (1922) Dunarea si problemele ei stiintifice si economice. Academia Romana, BucurestiGoogle Scholar
  43. 43.
    Botzan M (1991) Valorificarea hidroameliorativa a Luncii Dunarii romanesti si a Deltei. Redactia de Propaganda Tehnica Agricola, BucurestiGoogle Scholar
  44. 44.
    Botzan M (2004) Calauza pentru Dunarea romaneasca. Editura Academiei Romane, BucurestiGoogle Scholar
  45. 45.
    Ionescu-Sisesti G (1933) Lunca Dunarii si punerea ei in valoare. Imprimeria Centrala, BucurestiGoogle Scholar
  46. 46.
    Looy KV, Honnay O, Bossuyt B, Hermy M (2003) The effects of river embankment and forest fragmentation on the plant species richness and composition of floodplain forests in the Meuse Valley, Belgium. Belg J Botany 136(2):97–108Google Scholar
  47. 47.
    Vidrascu IG (1911) Istoricul indiguirilor fluviale si maritime. Tipografia Curtii Regale F. Göbl F. II, BucurestiGoogle Scholar
  48. 48.
    Vidrascu I (1921) Valorificarea regiunii inundabile a Dunarii. Tipografia Urbana, BucurestiGoogle Scholar
  49. 49.
    Visinescu I, Bularda M (2007) Valorificarea luncii indiguite a Dunarii, nu reinundarea terenurilor agricole. Revista «Profitul agricol» 51–52:35–36Google Scholar
  50. 50.
    Visinescu I, Bularda M (2007) Exploatarea ameliorativa complexa a incintelor indiguite – solutii antiseceta de productii agricole. Cereale si plante tehnice 12:11–13Google Scholar
  51. 51.
    Ionus O, Licurici M, Patroescu M, Boengiu S (2013) Romania assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region. Nat Hazards 75:S69–S88CrossRefGoogle Scholar
  52. 52.
    Manfreda S, Iacobellis V, Gioia A, Fiorentino M, Kochanek K (2018) The impact of climate on hydrological extremes. Water 10:802.  https://doi.org/10.3390/w10060802CrossRefGoogle Scholar
  53. 53.
    Mierla M, Romanescu G (2013) Hydrological flood risk assessment for Ceatalchioi locality, Danube Delta. Seminarul Geografic “Dimitrie Cantemir. Iasi, Romania 36:11–22Google Scholar
  54. 54.
    Mierla M, Nichersu I, Trifanov C, Nichersu Iuliana, Marin E, Sela F (2014) Links between selected environmental components and flood risk in the Danube Delta. Acta Zoologica Bulgarica Suppl. 7: 203–207Google Scholar
  55. 55.
    Mierla M, Romanescu G, Nichersu I, Grigoras I (2015) Hydrological risk map for the Danube delta—a case study of floods within the fluvial delta. IEEE J Sel Top Appl Earth Obs Remote Sens 8(1):98–104CrossRefGoogle Scholar
  56. 56.
    Romanescu G, Stoleriu C (2014) Anthropogenic interventions and hydrological-risk phenomena in the fluvial-maritime delta of the Danube (Romania). Ocean Coast Manag 102:123–130CrossRefGoogle Scholar
  57. 57.
    Ten Brinke WBM, Knoop J, Muilwijk H, Ligtvoet W (2017) Social disruption by flooding, a European perspective. Int J Disaster Risk Reduct 21:312–322CrossRefGoogle Scholar
  58. 58.
    Van Leeuwen B, Pravetz T, Liptay ZA, Tobak Z (2016) Physically based hydrological modelling of inland excess water. Carpathian J Earth Environ Sci 11(2):497–510Google Scholar
  59. 59.
    Zeleňáková M (2009) Preliminary flood risk assessment in the Hornád watershed. River Basin Manag 5:15–24CrossRefGoogle Scholar
  60. 60.
    Zeleňáková M (2015) Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin. Nat Hazards 79(3):2055–2071CrossRefGoogle Scholar
  61. 61.
    Donita N, Popescu A, Pauca-Comanescu M, Mihailescu S, Biris IA (2006) Habitatele din Romania. Modificari conform amendamentelor propuse de Romania si Bulgaria la Directiva Habitate (92/43/EEC). Editura Tehnica Silvica, BucurestiGoogle Scholar
  62. 62.
    Donita N, Biris LA, Filat M, Rosu C, Petrila M (2008) Ghid de bune practici pentru managementul padurilor din Lunca Dunarii. Editura Silvica, BucurestiGoogle Scholar
  63. 63.
    Mihailovici JM, Gabor O, Petru S, Randasu S (2006) Solutii propuse pentru amenajarea fluviului Dunarea pe sectorul romanesc. Hidrotehnica 51:9–20Google Scholar
  64. 64.
    Moraru N, Ioanitoaia H, Minazzi M (2007) Principii privind realizarea lucrarilor de aparare impotriva inundatiilor a localitatilor situate in lunca Dunarii. Hidrotehnica 52(4–5):24–30Google Scholar
  65. 65.
    Romanescu G, Stoleriu C, Dinu C (2010) The determination of the degree of trophicity of the lacustrine wetlands in the eastern carpathians (Romania). Forum geografic. Studii si cercetari de geografie si protectia mediului 9(9):65–74Google Scholar
  66. 66.
    Zeleňáková M, Fijko R, Diaconu DC, Remeňáková I (2018) Environmental impact of small hydro power plant—a case study. Environments 5(1):1–12CrossRefGoogle Scholar
  67. 67.
    Ioanitoaia H, Dobre V, Moraru N (2007) Un secol (1906–2006) de lucrari de indiguiri si amenajari hidroameliorative in lunca Dunarii. Hidrotehnica 52(1–2):41–45Google Scholar
  68. 68.
    Romanescu G, Pascal M, Pintilie-Mihu A, Stoleriu CC, Sandu I, Moisii M (2017) Water quality analysis in wetlands freshwater: common floodplain of Jijia-Prut Rivers. Rev Chim (Bucharest) 68(3):553–561Google Scholar
  69. 69.
    Hohensinner S, Sonnlechner C, Schmid M, Winiwarter V (2013) Two steps back, one step forward: reconstructing the dynamic Danube riverscape under human influence in Vienna. Water History 5:121–143CrossRefGoogle Scholar
  70. 70.
    Hzami A, Amrouni O, Romanescu G, Stoleriu C, Mihu-Pintilie A, Saâdi A (2017) Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the Western Bay of the Gulf of Tunis (Northern Africa). In: Kallel A, Ksibi M, Dhia HB, Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. Advances in Science, Technology & Innovation, pp 1627–1631Google Scholar
  71. 71.
    Ebert S, Hulea O, Strobel D (2009) Floodplain restoration along the lower Danube: a climate change adaptation case study. Climate Dev 1(3):212–219CrossRefGoogle Scholar
  72. 72.
    Sanders LM, Taffs K, Stokes D, Sanders CJ, Enrich-Prast A, Amora-Nogueira L, Marotta H (2018) Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences 15:447–455CrossRefGoogle Scholar
  73. 73.
    Schindler S, O’Neill FH, Biro M, Damm C, Gasso V, Kanka R, van der Sluis T, Krug A, Lauwaars SG, Sebesvari Z, Pusch M, Baranovsky B, Ehlert T, Neukirchen B, Martin JR, Euller K, Mauerhofer V, Wrbka T (2016) Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodivers Conserv 25:1349–1382CrossRefGoogle Scholar
  74. 74.
    Romanescu G (2014) The catchment area of the Milesian colony of Histria, within the Razim-Sinoie lagoon complex (Romania): hydro-geomorphologic, economic and geopolitical implications. Area 46(3):320–327CrossRefGoogle Scholar
  75. 75.
    Romanescu G, Dinu C, Stoleriu C, Romanescu AM (2010) Present state of trophic parameters of the main wetlands and deep waters from Romania. Present Environ Sustain Dev 4:159–174Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cristian Trifanov
    • 1
    Email author
  • Alin Mihu-Pintilie
    • 2
  • Marian Tudor
    • 3
  • Marian Mierlă
    • 1
  • Mihai Doroftei
    • 4
  • Silviu Covaliov
    • 5
  1. 1.Informational System and Geomatics Department“Danube Delta” National Institute for Research and DevelopmentTulceaRomania
  2. 2.Alexandru Ioan Cuza University of Iaşi, Interdisciplinary Research Department—Field ScienceIaşiRomania
  3. 3.Management Department of the “Danube Delta” National Institute for Research and DevelopmentTulceaRomania
  4. 4.Biodiversity Conservation and Sustainable Use of Natural Resources Department“Danube Delta” National Institute for Research and DevelopmentTulceaRomania
  5. 5.Ecological Restoration and Species Recovery Department“Danube Delta” National Institute for Research and DevelopmentTulceaRomania

Personalised recommendations