Advertisement

Nematodes

  • Francisco Javier SorribasEmail author
  • Caroline Djian-Caporalino
  • Thierry Mateille
Chapter
  • 42 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Plant-parasitic nematodes (PPNs) represent an important constraint for plant production worldwide. They are widely distributed around the world and are able to parasitize every plant species. Furthermore, the current restrictions on the use of chemical nematicides have increased the problems caused by PPNs, irrespective of the production system. Intensive vegetable production under protected cultivation is the system most vulnerable to PPN, especially to root-knot nematodes. Despite the high frequency of occurrence of root-knot nematodes, other PPN species occur in nematode communities, whose structure and composition are influenced by the plant species, the environmental conditions, the agronomical practices and the level of specificity of the control methods used to manage them. Integrated nematode management strategies must therefore be designed using a holistic approach that considers all the interactions between PPN species in the nematode communities, plant species and biotic and abiotic environmental conditions. The use of specific management tactics against a key PPN species only leads to changes of this species for others without solving the problem. Long-term studies that consider all of these complex relationships are therefore needed to manage the pathogenicity of the whole PPN community.

Keywords

Cyst nematodes Integrated nematode management Meloidogyne Nematode community shifts Population dynamics Pratylenchus Sustainable management Tolerance limit Vegetable crops Yield losses 

References

  1. Agrios GN (2005) Plant Pathology 5th edition Academic PressGoogle Scholar
  2. Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47CrossRefGoogle Scholar
  3. Anwar SA, Mahdi MM, McKenry MV et al (2013) Survey of plant-parasitic nematodes associated with four vegetable crops cultivated within tunnels. Pakistan J Zool 45:595–603Google Scholar
  4. Askary TH, Martinelli PRP (eds) (2015) Biocontrol agents of phytonematodes. CABI, WallingfordGoogle Scholar
  5. Aydinli G, Mennan S, Devran Z et al (2013) First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Dis 97:1262PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barbary A, Djian-Caporalino C, Palloix A et al (2015) Mini-review: host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae from genes to the field. Pest Manag Sci 71:1591–1598CrossRefGoogle Scholar
  7. Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A (2016) Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs. Front Plant Sci 7:632Google Scholar
  8. Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205PubMedCrossRefPubMedCentralGoogle Scholar
  9. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Wiley, LondonGoogle Scholar
  10. Boiteux LS, Charchar JM (1996) Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed 115:198–200CrossRefGoogle Scholar
  11. Briar SS, Wichman D, Reddy GVP (2016) Plant-parasitic nematode problems in organic agriculture. In: Nandwani D (ed) Organic farming for sustainable agriculture, sustainable development and biodiversity, vol 9. Springer, Cham, pp 107–122CrossRefGoogle Scholar
  12. Castagnone-Sereno P (2012) Meloidogyne enterolobii (=M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14:133–138CrossRefGoogle Scholar
  13. Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Leiden, BrillGoogle Scholar
  14. Chandel YS, Sunil K, Jain RK et al (2010) An analysis of nematode problems in greenhouse cultivation in Himachal Pradesh and avoidable losses due to Meloidogyne incognita in tomato. Indian J Nematol 40:198–203Google Scholar
  15. Chellami DO, Olson SM, Mitchell DJ et al (1997) Adaptation of soil solarization to the integrated management of soil-borne pests of tomato under humid conditions. Phytopathology 87:250–258CrossRefGoogle Scholar
  16. Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, pp 1104–1115Google Scholar
  17. Collange B, Navarrete M, Peyre G et al (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot 30:1251–1262CrossRefGoogle Scholar
  18. Cuadra R, Cruz X, Fajardo JL (2000) The use of short cycle crops as trap crops for the control of root-knot nematodes. Nematropica 30:241–246Google Scholar
  19. Curto G, DallaValle E, De Nicola GR et al (2012) Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita. Nematology 14:759–769CrossRefGoogle Scholar
  20. Curto G, DallaValle E, Matteo R et al (2016) Biofumigant effect of new defatted seed meals against the southern root-knot nematode, Meloidogyne incognita. Ann Appl Biol 169:17–26CrossRefGoogle Scholar
  21. Davies K, Spiegel Y (eds) (2011) Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms. Springer, DordrechtGoogle Scholar
  22. Davies KG, Kerry BR, Flynn CA (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Ann Appl Biol 112:491–501CrossRefGoogle Scholar
  23. Davies KG, Fargette M, Balla G et al (2001) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenocarpic root-knot nematodes (Meloidogyne spp.). Parasitology 122:111–120PubMedCrossRefGoogle Scholar
  24. Decraemer W, Hunt DJ (2006) Structure and classification. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 3–32CrossRefGoogle Scholar
  25. Devran Z, Sogut MA, Mutlu N (2010) Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathol Mediterr 49:11–17Google Scholar
  26. Djian-Caporalino C (2012) Root-knot nematode (Meloidogyne spp.), a growing problem in French vegetable crops. Bull OEPP/EPPO Bull 42:127–137CrossRefGoogle Scholar
  27. Djian-Caporalino C, Pijarowski L, Januel A et al (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theor Appl Genet 99:496–502PubMedCrossRefGoogle Scholar
  28. Djian-Caporalino C, Bourdy G, Cayrol JC (2005) Nematicidal and nematode-resistant plants. In: Regnault-Roger C, BJr P, Vincent C (eds) Biopesticides of plant origin. Lavoisier publishing Inc UK, pp 173–224Google Scholar
  29. Djian-Caporalino C, Fazari A, Arguel MJ et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486PubMedCrossRefGoogle Scholar
  30. Djian-Caporalino C, Molinari S, Palloix A et al (2011) The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur J Plant Pathol 131:431–440CrossRefGoogle Scholar
  31. Djian-Caporalino C, Palloix A, Fazari A et al (2014) Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol 14:53–66PubMedPubMedCentralCrossRefGoogle Scholar
  32. Djian-Caporalino C, Navarrete M, Dufils A et al (2015) Conception et évaluation d’innovations variétales et agronomiques pour maîtriser les nématodes à galles en maraîchage sous abri (le projet GEDUNEM). Les Rencontres du Végétal, Angers, 12–13 janv. 2015Google Scholar
  33. Djian-Caporalino C, Mateille T, Bailly-Bechet M et al (2019) Evaluating sorghums as green manure against root-knot nematodes. Crop Prot 122:142–150CrossRefGoogle Scholar
  34. Duponnois R, Mateille T, Sene V et al (1996) Effect of different West African species and strains of Arthrobotrys nematophagous fungi on Meloidogyne species. Entomophaga 41:475–483CrossRefGoogle Scholar
  35. EC Directive 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council. Directives 79/117/EEC and 91/414/EEC. Off J Eur Union, 24.11. L 309/1-50Google Scholar
  36. Elhady A, Giné A, Topalovic O et al (2017) Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS One 12:e0177145.  https://doi.org/10.1371/journal.pone.0177145CrossRefPubMedPubMedCentralGoogle Scholar
  37. EPA (US Environmental Protection Agency) (2007) National Pesticide Survey: 1,2-Dibromo-3-Chloropropane (DBCP) https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10003H0P.TXT. Accessed 28 Nov 2017
  38. Escudero N, Ferreira SR, Lopez-Moya F et al (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585PubMedCrossRefPubMedCentralGoogle Scholar
  39. Escudero N, Lopez-Moya F, Ghahremani Z et al (2017) Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front Plant Sci 8:1415.  https://doi.org/10.3389/fpls.2017.01415CrossRefPubMedPubMedCentralGoogle Scholar
  40. Evans AA, Perry RN (2009) Survival mechanisms. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB international, Wallingford, pp 201–222CrossRefGoogle Scholar
  41. Evans K, Rove JA (1998) Distribution and economic importance. In: Sharma SB (ed) Cyst nematodes. Springer, Dordrecht, pp 1–30Google Scholar
  42. Evans K, Trudgill DL, Webster JM (1993) Plant parasitic nematodes in temperate agriculture. CABI, WallingfordGoogle Scholar
  43. Expósito A, Munera M, Giné A et al (2018) Cucumis metuliferus is resistant to root-knot nematode Mi1.2 gene (a)virulent isolates and a promising melon rootstock. Plant Pathol 67:1161–1167.  https://doi.org/10.1111/ppa.12815CrossRefGoogle Scholar
  44. Expósito A, García S, Giné A et al (2019) Cucumis metuliferus reduces Meloidogyne incognita virulence against the Mi1.2 resistance gene in a tomato–melon rotation sequence. Pest Manag Sci 75:1902–1910.  https://doi.org/10.1002/ps.5297CrossRefPubMedGoogle Scholar
  45. Ferris H, Roberts PA, Thomason IJ (1985) Nematodes. In: University of California Statewide Integrated Pest Management Project (ed) Integrated pest management for tomatoes. Division of Agriculture and Natural Resources, University of California, Oakland, CA, pp 60–65Google Scholar
  46. Freckman DW, Ettema CH (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agric Ecosyst Environ 45:239–261CrossRefGoogle Scholar
  47. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–24PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gallaher RN, Dickson DW, Corella JF et al (1988) Tillage and multiple cropping systems and population-dynamics of phytoparasitic nematodes. J Nematol 2:90–94Google Scholar
  49. Gamliel A, Stapleton JJ (1993) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905CrossRefGoogle Scholar
  50. Gerič B, Strajnar P, Susič N et al (2017) Reported populations of Meloidogyne ethiopica in Europe identified as Meloidogyne luci. Plant Dis 101:1627–1632CrossRefGoogle Scholar
  51. Giné A, Sorribas FJ (2017a) Quantitative approach for the early detection of selection for virulence of Meloidogyne incognita on resistant tomato in plastic greenhouses. Plant Pathol 66:1338–1344.  https://doi.org/10.1111/ppa.12679CrossRefGoogle Scholar
  52. Giné A, Sorribas FJ (2017b) Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251) on Meloidogyne incognita in a tomato-cucumber rotation in a greenhouse. Pest Manag Sci 73:880–887.  https://doi.org/10.1002/ps.4357CrossRefPubMedGoogle Scholar
  53. Giné A, Bonmatí M, Sarro A et al (2013) Natural occurrence of fungal egg parasites of root-knot nematodes, Meloidogyne spp. in organic and integrated vegetable production systems in Spain. BioControl 58:407–416.  https://doi.org/10.1007/s10526-012-9495-6CrossRefGoogle Scholar
  54. Giné A, López-Gómez M, Vela MD et al (2014) Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathol 63:1446–1453.  https://doi.org/10.1111/ppa.12217CrossRefGoogle Scholar
  55. Giné A, Carrasquilla M, Martínez-Alonso M et al (2016) Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Front Plant Sci 7:164.  https://doi.org/10.3389/fpls.2016.00164CrossRefPubMedPubMedCentralGoogle Scholar
  56. Giné A, González C, Serrano L et al (2017) Population dynamics of Meloidogyne incognita on cucumber grafted onto the cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur J Plant Pathol 148:795–805.  https://doi.org/10.1007/s10658-016-1135-zCrossRefGoogle Scholar
  57. Goillon C, Mateille T, Tavoillot J et al (2016) Utiliser le sorgho pour lutter contre les nématodes à galles. Phytoma La défense des végétaux 698:39–44Google Scholar
  58. Goodell PB, Ferris H (1989) Influence of environmental factors on the hatch and survival of Meloidogyne incognita. J Nematol 21:328–334PubMedPubMedCentralGoogle Scholar
  59. Greco N, Di Vito M (2009) Population dynamics and damage levels. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 246–274CrossRefGoogle Scholar
  60. Greco N, Brandonisio A, Marinis G (1982) Investigation on the biology of Heterodera schachtii in Italy. Nematol Mediterr 10:201–224Google Scholar
  61. Guerena M (2006) Nematodes: alternative controls. http://attra.ncat.org/attra-pub/PDF/nematode.pdf. Accessed 28 Nov 2017
  62. Hallmann J, Hanisch D, Braunsmann J et al (2005) Plant-parasitic nematodes in soil-less culture systems. Nematology 7:1–4CrossRefGoogle Scholar
  63. Hooks CRR, Wang K-H, Ploeg A et al (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320CrossRefGoogle Scholar
  64. Ingham E (1996) The soil foodweb: its importance in ecosystem health. http://rain.org:80/~sals/ingham.html. Accessed 28 Nov 2017
  65. Islam A, Mercer CF, Leung S et al (2015) Transcription of biotic stress associated genes in white clover (Trifolium repens L.) differs in response to cyst and root-knot nematode infection. PLoS One 10:e0137981.  https://doi.org/10.1371/journal.pone.0137981CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jones JT, Haegeman A, Danchin EGJ et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jourand P, Rapior S, Fargette M et al (2004) Nematostatic activity of aqueous extracts of West African Crotalaria species. Nematology 6:765–771CrossRefGoogle Scholar
  68. Kiewnick S, Karssen G, Brito JA et al (2008) First report of the root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Dis 92:1370PubMedCrossRefGoogle Scholar
  69. Kruger DHM, Fourie JC, Malan AP (2013) Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. S Afr J Enol Vitic 34:287–295Google Scholar
  70. Kyndt T, Denil S, Haegeman A et al (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196:887–900.  https://doi.org/10.1111/j.1469-8137.2012.04311.xCrossRefPubMedGoogle Scholar
  71. Lavelle P, Blouin M, Boyer J, Cadet P, Laffray D, Pham-Thi AT, Reversat G, Settle W, Zuily Y (2004) Plant parasite control and soil fauna diversity. C R Biol 327:629–638PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lenz R, Eisenbeis G (2000) Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biol Fertil Soils 31:237–244CrossRefGoogle Scholar
  73. López-Gómez M, Gine A, Vela MD et al (2014) Damage functions and thermal requirements of Meloidogyne javanica and Meloidogyne incognita on watermelon. Ann Appl Biol 165:466–473CrossRefGoogle Scholar
  74. López-Gómez M, Flor-Peregrín E, Talavera M et al (2015) Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Prot 70:8–14CrossRefGoogle Scholar
  75. López-Llorca LV, Jansson HB, Macia Vicente JG et al (2006) Nematophagous fungi as root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Soil biology: microbial root endophytes. soil biology, vol 9. Springer, Heidelberg, pp 191–206Google Scholar
  76. López-Pérez JA, Roubtsova T, De C, Garcia M et al (2010) The potential of five winter-grown crops to reduce root-knot nematode damage and increase yield of tomato. Nematology 42:120–127Google Scholar
  77. Luc M, Sikora RA, Bridge J (2005) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, WallingfordCrossRefGoogle Scholar
  78. Madhava S, Gilbert MB (2000) The montreal protocol on substances that deplete the ozone layer. UNEP, 54 pGoogle Scholar
  79. Maleita C, Curtis R, Abrantes I (2012) Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathol 61:1002–1010CrossRefGoogle Scholar
  80. Maluf WR, Azevedo SM, Gomes LAA et al (2002) Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genet Mol Res 1:64–71PubMedCrossRefPubMedCentralGoogle Scholar
  81. Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid to jasmonic acid regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377.  https://doi.org/10.1111/nph.14251CrossRefPubMedGoogle Scholar
  82. Mateille T, Schwey D, Amazouz S (2005) Sur tomates, la cartographie des indices de galles. Phytoma, la défense des végétaux 584:40–43Google Scholar
  83. Mateille T, Cadet P, Fargette M (2008) Control and management of plant-parasitic nematode communities in a soil conservation approach. In: Ciancio A, Mukerji KG (eds) Integrated management of plant pests and diseases, vol 2. Springer, Dordrecht, pp 79–97Google Scholar
  84. Mateille T, Tavoillot J, Goillon C et al (2019) Interspecific competition in plant-parasitic nematode communities may question the sustainability of soil suppressiveness in complex cropping systems. Submit to PedobiologiaGoogle Scholar
  85. MBTOC (2006) Report of the Methyl Bromide Technical Options Committee. Non-chemical alternatives adopted as replacements to methyl bromide on a large scale, United Nation Environmental Programme, UNON Publishing Section Services, Nairobi (KE), pp 39–73Google Scholar
  86. McSorley R (2001) Multiple cropping systems for nematode management: a review. Soil Crop Sci Soc Flor Proc 60:132–142Google Scholar
  87. McSorley R (2011) Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J Nematol 43:69–81PubMedPubMedCentralGoogle Scholar
  88. McSorley R, Porazinska DL (2001) Elements of sustainable agriculture. Nematropica 31:1–9Google Scholar
  89. McSorley R, Wang KH, Kokalis-Burelle N et al (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214Google Scholar
  90. Medeiros HA, Vieira de Araújo Filho J, Grassi de Freitas L et al (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 7:40216.  https://doi.org/10.1038/srep40216CrossRefPubMedPubMedCentralGoogle Scholar
  91. Melakeberhan H, Xu A, Kravchenko A et al (2006) Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology 8:793–799CrossRefGoogle Scholar
  92. Mizukubo T, Adachi H (1997) Effect of temperature on Pratylenchus penetrans development. J Nematol 29:306–314PubMedPubMedCentralGoogle Scholar
  93. Navarrete M, Djian-Caporalino C, Mateille T et al (2016) A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil. Agron Sustain Dev 36:68.  https://doi.org/10.1007/s13593-016-0401-yCrossRefGoogle Scholar
  94. Nilusmas S, Mercat M, Perrot T et al (2016) A multi-seasonal model of plant-nematode interactions and its use to identify durable plant resistance deployment strategies. V International Symposium on Models for Plant Growth, Environment Control and Farming Management in Protected Cultivation, Avignon 19–22/09/2016Google Scholar
  95. Nyczepir AP, Thomas SH (2009) Current and future management strategies in intensive crop production systems. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 412–443CrossRefGoogle Scholar
  96. Olthof THA, Potter JW, Peterson EA (1974) Relationship between population densities of Heterodera schachtii and losses in vegetable crops in Ontorio. Phytopathology 64:549–554CrossRefGoogle Scholar
  97. Ornat C, Sorribas FJ (2008) Integrated management of root-knot nematodes in Mediterranean horticultural crops. In: Ciancio A, Mukerji KG (eds) Integrated management of plant pests and diseases, vol 2. Springer, Dordrecht, pp 295–320Google Scholar
  98. Parmelee RW, Alston DG (1986) Nematode trophic structure in conventional and no-till agroecosystem. J Nematol 18:403–407PubMedPubMedCentralGoogle Scholar
  99. Potter JW, Olthof THA (1993) Nematode pests of vegetable crops. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford, pp 171–207Google Scholar
  100. Rakesh G, Sharmaj NK (1991) Nematicidal properties of garlic, Allium sativum L. Indian J Nematol 21:14–18Google Scholar
  101. Rich JR, Dunn RA, Noling JW (2004) Nematicides: past and present uses. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology advances and perspectives: nematode management and utilization. CABI, Wallingford, pp 1179–1200CrossRefGoogle Scholar
  102. Rich JR, Brito JA, Kaur R et al (2009) Weed species as hosts of Meloidogyne: a review. Nematropica 39:157–185Google Scholar
  103. Roberts PA, Thomason IJ, McKinney HE (1981) Influence of non-hosts, crucifers, and fungal parasites on field populations of Heterodera schachtii. J Nematol 13:164–171PubMedPubMedCentralGoogle Scholar
  104. Robinson AF, Perry RN (2006) Behavior and sensory perception. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 210–233CrossRefGoogle Scholar
  105. Runia W, Greenberger A (2005) Preliminary results of physical soil disinfestation by hot air. Acta Hortic (698):251–256Google Scholar
  106. Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of nematologists, Hyattsville, pp 7–14Google Scholar
  107. Schomaker CH, Been TH (2006) Plant growth and population dynamics. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 275–301CrossRefGoogle Scholar
  108. Seinhorst JW (1970) Dynamics of population of plant parasitic nematodes. Annu Rev Phytopathol 8:131–156CrossRefGoogle Scholar
  109. Sikora R, Fernández E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, pp 319–392CrossRefGoogle Scholar
  110. Slosson Final Report (2007-2008) Trap cropping plus bionematicides for management of root-knot nematode in home gardens. Final Report for Slosson Foundation. Investigator: Becky B. Westerdahl, Professor of Nematology, Department of Nematology, University of California, Davis, p 6Google Scholar
  111. Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. CABI, WallingfordCrossRefGoogle Scholar
  112. Stirling GR, Smith LJ (1998) Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Control 11:231–239CrossRefGoogle Scholar
  113. Talavera M, Verdejo-Lucas S, Ornat C et al (2009) Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses. Crop Prot 28:662–667.  https://doi.org/10.1016/j.cropro.2009.03.015CrossRefGoogle Scholar
  114. Talavera M, Sayadi S, Chirosa-Rios M et al (2012) Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology 14:517–527CrossRefGoogle Scholar
  115. Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. CABI, WallingfordGoogle Scholar
  116. Thies JA (2011) Virulence of Meloidogyne incognita to expression of N gene in pepper. J Nematol 43:90–94PubMedPubMedCentralGoogle Scholar
  117. Thies JA, Davis RF, Mueller JD et al (2004) Double-cropping cucumbers and squash after resistant bell pepper for root-knot nematode management. Plant Dis 88:589–593PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681.  https://doi.org/10.1111/j.1744-7348.1987.tb04187.xCrossRefGoogle Scholar
  119. Trudgill DL, Bala G, Block VC et al (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845CrossRefGoogle Scholar
  120. Vela MD, Giné A, López-Gómez M et al (2014) Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. Eur J Plant Pathol 140:481–490CrossRefGoogle Scholar
  121. Verdejo-Lucas S, Ornat C, Sorribas FJ et al (2002) Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. J Nematol 34:405–408PubMedPubMedCentralGoogle Scholar
  122. Verdejo-Lucas S, Blanco M, Cortada L et al (2013a) Resistance of tomato rootstocks to Meloidogyne arenaria and Meloidogyne javanica under intermittent elevated soil temperatures above 28 °C. Crop Prot 46:57–62.  https://doi.org/10.1016/j.cropro.2012.12.013CrossRefGoogle Scholar
  123. Verdejo-Lucas S, Blanco M, Talavera M et al (2013b) Fungi recovered from root-knot nematodes infecting vegetables under protected cultivation. Biocontrol Sci Tech 23:277–287.  https://doi.org/10.1080/09583157.2012.756459CrossRefGoogle Scholar
  124. Veresoglou-Stavros D, Rillig Matthias C (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217CrossRefGoogle Scholar
  125. Vos C, Schouteden N, van Tuinen D et al (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54CrossRefGoogle Scholar
  126. Walters SA, Wehner TC, Barker KR (1996) NC-42 and NC-43: root-knot nematode-resistant cucumber germplasm. HortScience 31:1246–1247CrossRefGoogle Scholar
  127. Wang KH, McSorley R (2008) Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarisation. J Nematol 40:7–12PubMedPubMedCentralGoogle Scholar
  128. Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403PubMedCrossRefGoogle Scholar
  129. Wilson MJ, Kaouli-Duarte T (eds) (2009) Nematodes as environmental indicators. CABI, WallingfordGoogle Scholar
  130. Zheng L, Ferris H (1991) Four types of dormancy exhibited by eggs of Heterodera schachtii. Revue Nematol 14:419–426Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francisco Javier Sorribas
    • 1
    Email author
  • Caroline Djian-Caporalino
    • 2
  • Thierry Mateille
    • 3
  1. 1.Department of Agri-food Engineering and BiotechnologyUniversitat Politècnica de Catalunya BarcelonaTechCastelldefelsSpain
  2. 2.INRAE, CNRS, ISAUniversité Côte d’AzurNiceFrance
  3. 3.CBGP, IRD, CIRAD, INRAE, Montpellier SupAgroUniversity of MontpellierMontpellierFrance

Personalised recommendations