Insect and Mite Pests

  • Markus KnappEmail author
  • Eric Palevsky
  • Carmelo Rapisarda
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)


Insect and mite pests are a major constraint to greenhouse production of vegetables, fruits and ornamentals. As the abiotic conditions in greenhouses are relatively stable and uniform in most parts of the world, the insect and mite pest fauna is dominated by a relative small number of usually polyphagous species. Many of these pests have a worldwide distribution. This chapter provides an overview of the most important insect and mite pests in protected cultivation and a brief summary on control options. The following groups are covered: gall mites (Eriophyidae), spider mites (Tetranychidae), flat mites (Tenuipalpidae), tarsonemid mites (Tarsonemidae), thrips (Thripidae), whiteflies (Aleyrodidae), aphids (Aphididae), scale insects (Coccoidea), caterpillars (Lepidoptera), dipteran leafminers (Agromyzidae), sciarid flies (Sciaridae) and beetles (Coleoptera).


Gall mites Spider mites Flat mites Tarsonemid mites Thrips Whiteflies Aphids Scale insects Caterpillars Dipteran leaf miners Sciarid flies Beetles 



MK would like to thank his colleagues Johannette Klapwijk and Jeroen van Schelt. Their contributions during the writing of “Knowing and Recognizing” at Koppert helped a lot in compiling several parts of this chapter.


  1. Abbes K, Arbi A, Chermiti B (2012) The tomato leaf miner Tuta absoluta (Meyrick) in Tunisia: current status and management strategies. EPPO Bull 42:226–233CrossRefGoogle Scholar
  2. Abd-Rabou S, Ali N, El-Fatih MM (2009) Life table of the hemispherical scale, Saissetia coffeae (Walker) (Hemiptera: Coccidae). Egypt Acad J Biolog Sci 2:165–170Google Scholar
  3. Akella SVS, Kirk WDJ, Lu Y-B, Murai T, Walters KFA, Hamilton JGC (2014) Identification of the aggregation pheromone of the melon thrips, Thrips palmi. PLoS One 9(8):e103315PubMedPubMedCentralCrossRefGoogle Scholar
  4. Albajes R, Sarasŭa MJ, Avilla J, Arnó J, Gabarra R (2003) Integrated pest management in the Mediterranean Region: the case of Catalonia, Spain. In: Maredia KM, Dakouo D, Mota-Sanchez D (eds) Integrated pest management in the global arena. CABI Publishing, Wallingford, pp 341–356CrossRefGoogle Scholar
  5. Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JH (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B 278:3074–3080PubMedCrossRefGoogle Scholar
  6. Annecke DP (1966) Biological studies on the immature stages of soft brown scale, Coccus hesperidum Linnaeus (Homoptera: Coccidae). S Afr J Agric Sci 9:205–228Google Scholar
  7. Antignus Y, Ben-Yakir D (2004) Ultraviolet-absorbing barriers, an efficient integrated pest management tool to protect greenhouses from insects and virus disease. In: Horowitz R, Ishaaya A (eds) Insect pest management: field and protected crops. Springer, New York, pp 319–335CrossRefGoogle Scholar
  8. Ataide LMS, Pappas ML, Schimmel BCJ, Lopez-Orenes A, Alba JM, Duarte MVA, Pallini A, Schuurink RC, Kant MR (2016) Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Sci 252:300–310PubMedCrossRefGoogle Scholar
  9. Auger P, Migeon A, Ueckermann EA, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): review and new data. Acarologia 53:383–415CrossRefGoogle Scholar
  10. Azandémè-Hounmalon GY, Affognon HD, Komlan FA, Tamò M, Fiaboe KKM, Kreiter S, Martin T (2015) Farmers’ control practices against the invasive red spider mite, Tetranychus evansi Baker & Pritchard in Benin. Crop Prot 76:53–58CrossRefGoogle Scholar
  11. Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L, Osakabe M, Vontas J, Van Leeuwen T (2017) A mutation in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem Mol Biol 80:79–90PubMedCrossRefGoogle Scholar
  12. Barbosa LR, Carvalho CF, Auad AM, de Souza B, Batista EP (2011) Fertility and life expectancy tables of Myzus persicae on pepper in laboratory and greenhouse. Bragantia 70:375–382CrossRefGoogle Scholar
  13. Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Cienc Invest Agrar 25:133–137CrossRefGoogle Scholar
  14. Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87PubMedCrossRefGoogle Scholar
  15. Beard JJ, Ochoa R, Bauchan GR, Trice MD, Redford AJ, Walters TW, Mitter C (2012) Flat mites of the world, 2nd edn. Identification Technology Program. CPHST, PPQ, APHIS, USDA, Fort Collins.
  16. Beard JJ, Ochoa R, Braswell WE, Bauchan GR (2015) Brevipalpus phoenicis (Geijskes) species complex (Acari: Tenuipalpidae) – a closer look. Zootaxa 3944:1–67PubMedCrossRefGoogle Scholar
  17. Ben-Dov Y, Hodgson CJ (eds) (1997) Soft scale insects. Their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  18. Berlinger MJ, Taylor RAJ, Lebiush-Mordechi S, Shalhevet S (2002) Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bull Ent Res 92:367–373CrossRefGoogle Scholar
  19. Bielza P (2008) Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag Sci 64:1131–1138PubMedCrossRefGoogle Scholar
  20. Biondi A, Zappalà L, Desneux N, Aparo A, Siscaro G, Rapisarda C, Martin T, Tropea Garzia G (2015) Potential toxicity of α-cypermethrin-treated net on Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 108:1191–1197PubMedCrossRefGoogle Scholar
  21. Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread and management of the invasive south American tomato pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258PubMedCrossRefGoogle Scholar
  22. Blackman RL, Eastop VF (2006) Aphids on the world’s herbaceous plants and shrubs. Wiley with the Natural History Museum, LondonGoogle Scholar
  23. Blümel S (2004) Biological control of aphids on vegetable crops. In: Heinz KM, van Driesche R, Parrella MP (eds), Biocontrol in protected culture, Ball, Batavia, pp 297–312Google Scholar
  24. Bonato O (1999) The effect of temperature on life history parameters of Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 23:11–19CrossRefGoogle Scholar
  25. Bottenberg H, Lingren B (1998) Field performance of a new pepper weevil pheromone formulation. Proc Fla State Hort Soc 111:48–50Google Scholar
  26. Boubou A, Migeon A, Roderick GK, Navajas M (2011) Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13:81–92CrossRefGoogle Scholar
  27. Bounfour M, Tanigoshi L (2001) Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini Borealis (Acari: Tetranychidae). Ann Entomol Soc Am 94:400–404CrossRefGoogle Scholar
  28. Boykin LM (2014) Bemisia tabaci nomenclature: lessons learned. Pest Manag Sci 70:1454–1459PubMedCrossRefGoogle Scholar
  29. Brødsgaard HF, Albajes R (1999) Insect and mite pests. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Developments in plant pathology, vol 14. Springer, Dordrecht, pp 48–60CrossRefGoogle Scholar
  30. Broughton S, Harrison J (2012) Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Prot 42:156–163CrossRefGoogle Scholar
  31. Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–76CrossRefGoogle Scholar
  32. Brust GE, Gotoh T (2018) Mites: biology, ecology, and management. In: Wakil W, Brust GE, Perring TM (eds) Sustainable management of arthropod pests of tomato. Elsevier, London, pp 111–130CrossRefGoogle Scholar
  33. Bruton BD, Chandler LD, Miller ME (1989) Relationships between pepper weevil and internal mold of sweet pepper. Plant Dis 73:170–173CrossRefGoogle Scholar
  34. Camacho ER, Chong J-H (2015) General biology and current management approaches of soft scale pests (Hemiptera: Coccidae). J Integr Pest Manag 6(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  35. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796CrossRefGoogle Scholar
  36. Cannon RJC, Matthews L, Collins DW (2007) Review of the pest status and control options for Thrips palmi. Crop Prot 26:1089–1098CrossRefGoogle Scholar
  37. Capinera JL (2008) Pepper weevil, Anthonomus eugenii Cano (Insecta: Coleoptera: Curculionidae). University of Florida, IFAS Extension.
  38. Carboneras C, Genovesi P, Vilà M et al (2018) A prioritised list of invasive alien species to assist the effective implementation of EU legislation. J Appl Ecol 55:539–547CrossRefGoogle Scholar
  39. Cardé RT (2008) Insect migration: do migrant moths know where they are heading? Curr Biol 18:R472–R474PubMedCrossRefGoogle Scholar
  40. Carey J, Bradley J (1982) Developmental rates, vital schedules, sex ratios and life tables for Tetranychus urticae, T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia 23:333–345Google Scholar
  41. Carletto J, Lombaert E, Chavigny P, Brévault T, Lapchin L, Vanlerberghe-Masutti F (2009) Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol Ecol 18:2198–2212PubMedCrossRefGoogle Scholar
  42. Cating RA, Hoy MA, Palmateer AJ (2010) Silwet L-77 improves the efficacy of horticultral oils for control of boisduval scale Diaspis boisduvalii (Hemiptera: Diaspididae) and the flat mite Tenuipalpus pacificus (Arachnida: Acari: Tenuipalpidae) on orchids. Fla Entomol 93:100–106CrossRefGoogle Scholar
  43. Cavalieri V, Manglli A, Tiberini A, Tomassoli L, Rapisarda C (2014) Rapid identification of Trialeurodes vaporariorum, Bemisia tabaci (MEAM1 and MED) and tomato-infecting criniviruses in whiteflies and in tomato leaves by real-time reverse transcription-PCR assay. Bull Insectol 67:219–225Google Scholar
  44. Cherif A, Harbaoui K, Zappalà L, Lebdi-Grissa K (2018) Efficacy of mass trapping and insecticides to control Tuta absoluta in Tunisia. J Plant Dis Prot 125:51–61CrossRefGoogle Scholar
  45. Childers CC, Rodrigues JC (2011) An overview of Brevipalpus mites (Acari: Tenuipalpidae) and the plant viruses they transmit. Zoosymposia 6:180–192CrossRefGoogle Scholar
  46. Childers CC, French JV, Rodrigues JCV (2003a) Brevipalpus californicus, B. obovatus, B. phoenicis, and B. lewisi (Acari: Tenuipalpidae): a review of their biology, feeding injury and economic importance. Exp Appl Acarol 30:5–28PubMedCrossRefGoogle Scholar
  47. Childers CC, Rodrigues JCV, Welbourn WC (2003b) Host plants of Brevipalpus californicus, B. obovatus, and B. phoenicis (Acari: Tenuipalpidae) and their potential involvement in the spread of viral diseases vectored by these mites. Exp Appl Acarol 30:29–105PubMedCrossRefGoogle Scholar
  48. Cloyd RA (2015) Ecology of fungus gnats (Bradysia spp.) in greenhouse production systems associated with disease-interactions and alternative management strategies. Insects 6:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  49. Cocco A, Deliperi S, Delrio G (2012) Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps. Bull IOBC/WPRS 80:319–324Google Scholar
  50. Cocco A, Deliperi S, Delrio G (2013) Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J Appl Entomol 137:16–28CrossRefGoogle Scholar
  51. Collins SP (2016) The biology and ecology of Aleyrodes proletella, the cabbage whitefly; a pest of Brassica crops. PhD thesis, School of Life Sciences, University of WarwickGoogle Scholar
  52. Copland MJW, Tingle CCD, Saynor M, Panism A (1985) Biology of glasshouse mealybugs and their predators and parasitoids. In: Hussey NW, Scopes N (eds) Biological pest control: the glasshouse experience. Blandford, PooleGoogle Scholar
  53. Corrales MJL (2002) Estrategias bioracionales para el manejo de las principales plagas del cultivo del chile en la Cruz de Elota, Sinaloa. Tesis de Doctorado, Colegio de Postgraduados, Montecillo, TexcocoGoogle Scholar
  54. Croft B, Pratt P, Koskela G, Kaufman D (1998) Predation, reproduction, and impact of phytoseiid mites (Acari: Phytoseiidae) on cyclamen mite (Acari: Tarsonemidae) on strawberry. J Econ Entomol 91:1307–1314CrossRefGoogle Scholar
  55. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefGoogle Scholar
  56. De Clercq P, Merlevede F, Mestdagh I, Vendendurpel K, Mohaghegh J, Degheele D (1998) Predation on the tomato looper Chrysodeixis chalcites (Esper) (Lep., Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae). J Appl Entomol 122:93–98CrossRefGoogle Scholar
  57. De Moraes G, Freire R (2001) A new species of Tenuipalpidae (Acari: Prostigmata) on orchid from Brazil. Zootaxa 1(1):10CrossRefGoogle Scholar
  58. Demaeght PA (2015) A genomic approach to investigate resistance mechanisms in the two-spotted spider mite Tetranychus urticae. PhD thesis, University of AmsterdamGoogle Scholar
  59. Denmark HA (2000) Cyclamen mite. In: Gillett-Kaufman J (ed) Featured creatures. University of Florida Entomology and Nematology Department and the Florida Department of Agriculture and Consumer Services’ Division of Plant IndustryGoogle Scholar
  60. Denmark HA (2012) Phalaenopsis mite, Tenuipalpus pacificus Baker (Arachnida: Acari: Tenuipalpidae). Fact sheet IFAS extension, EENY377Google Scholar
  61. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive south American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond. J Pest Sci 84:403–408CrossRefGoogle Scholar
  62. Dickey AM, Kumar V, Hoddle MS, Funderburk JE, Morgan JK, Jara-Cavieres A, Shatters GR Jr, Osborne LS, McKenzie CL (2015) The Scirtothrips dorsalis species complex: endemism and invasion in a global pest. PLoS One 10(4):e0123747PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dorsman R, van de Vrie M (1987) Population dynamics of the greenhouse whitefly Trialeurodes vaporariorum on gerbera. Bull IOBC/WPRS 10(2):46–51Google Scholar
  64. Duso C, Castagnoli M, Simoni S, Angeli G (2010) The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51:151–168PubMedCrossRefGoogle Scholar
  65. Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp Appl Acarol 25:25–36PubMedCrossRefGoogle Scholar
  66. Easterbrook MA, Fitzgerald JD, Pinch C, Tooley J, Xu XM (2003) Development times and fecundity of three important arthropod pests of strawberry in the United Kingdom. Ann Appl Biol 143:325–331CrossRefGoogle Scholar
  67. EFSA Panel on Plant Health (2011) Guidance on the environmental risk assessment of plant pests. EFSA J 9:2460CrossRefGoogle Scholar
  68. Eller FJ, Bartelt RJ, Shasha BS, Schuster DJ, Riley DG, Stansly PA, Mueller TF, Shuler KD, Johnson B, Davis JH, Sutherland CA (1994) Aggregation pheromone for the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae): identification and field activity. J Chem Ecol 20:1537–1555PubMedCrossRefGoogle Scholar
  69. Eördegh FR, Lupi D, Colombo M (2003) Aleyrodes lonicerae Walker una nuova avversità per Cyclamen persicum Miller. Inform Fitopatol 53(2):56–58Google Scholar
  70. EPPO (2011) Guidelines on pest risk analysis: decision support scheme for quarantine pests. European and Mediterranean Plant Protection Organization. Retrieved from
  71. EPPO (2014) First report of Anthonomus eugenii in Italy. EPPO Reporting Service 01-2014:2014/009.
  72. EPPO (2017) EPPO Global Database, Scirtothrips dorsalis.
  73. Fasulo TR (2000). Broad mite. In: Gillett-Kaufman J (ed) Featured creatures. University of Florida Entomology and Nematology Department and the Florida Department of Agriculture and Consumer Services’ Division of Plant IndustryGoogle Scholar
  74. Feng H, Wo X, Wo B, Wo K (2009) Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. J Econ Entomol 102:95–104PubMedCrossRefGoogle Scholar
  75. Flechtmann CHW, Etienne J (2004) The red palm mite, Raoiella indica Hirst, a threat to palms in the Americas (Acari: Prostigmata: Tenuipalpidae). Syst Appl Acarol 9:109–110Google Scholar
  76. Foottit RG, Maw HEL, von Dohlen CD, Hebert PDN (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Res 8:1189–1201CrossRefGoogle Scholar
  77. Furtado IP, de Moraes GJ, Kreiter S, Tixier MS, Knapp M (2007) Potential of a Brazilian population of the predatory mite Phytoseiulus longipes as a biological control agent of Tetranychus evansi (Acari: Phytoseiidae, Tetranychidae). Biol Control 42:139–147CrossRefGoogle Scholar
  78. Gacheri C, Kigen T, Sigsgaard L (2015) Hot-spot application of biocontrol agents to replace pesticides in large scale commercial rose farms in Kenya. BioControl 60:795–803CrossRefGoogle Scholar
  79. Gao Y, Reitz S, Xing Z, Ferguson S, Lei Z (2017) A decade of leafminer invasion in China: lessons learned. Pest Manag Sci 73:1775–1779PubMedCrossRefGoogle Scholar
  80. García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Database.
  81. Gaumont R, Moreau R (1961) Observations sur la biologie de Plusia chalcites Esp (Lepidoptera, Noctuidae). Rev Zool Agric Appl 60:31–36Google Scholar
  82. Gerson U (1992) Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Exp Appl Acarol 13:163–178CrossRefGoogle Scholar
  83. Gerson U (2008) The Tenuipalpidae: an under-explored family of plant-feeding mites. Syst Appl Acarol 13:83–101Google Scholar
  84. Gerson U, Applebaum S (2018) Aculops lycopersici (Massee). In: Gerson U (ed) Plant pests of the Middle East. The Robert H Smith Faculty of Agriculture, Food and Environment, of the Hebrew University, Rehovot.
  85. Gerson U, Weintraub PG (2007) Mites for control of pests in protected cultivation. Pest Manag Sci 63:658–676PubMedCrossRefGoogle Scholar
  86. Gerson U, Weintraub PG (2012) Mites (Acari) as a factor in greenhouse management. Annu Rev Entomol 57:229–247PubMedPubMedCentralCrossRefGoogle Scholar
  87. Gill RJ (1990) The morphology of whiteflies. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, pp 13–46Google Scholar
  88. Gillespie DR, Vernon RS (1990) Trap catch of western flower thrips (Thysanoptera: Thripidae) as affected by color and height of sticky traps in mature greenhouse cucumber crops. J Econ Entomol 83:971–975CrossRefGoogle Scholar
  89. Goldasteh S, Talebi AA, Fathipour Y, Ostovan H, Zamani A, Shoushtari RV (2009) Effect of temperature on life history and population growth parameters of Planococcus citri (Homoptera, Pseudococcidae) on coleus [Solenostemon scutellarioides (L.) Codd.]. Arch Biol Sci Belgrade 61:329–336CrossRefGoogle Scholar
  90. González-Zamora JE, Castillo ML, Avilla C (2012) Assessment of life history parameters ofAspidiotus nerii (Hemiptera: Diaspididae) to improve the mass rearing of Aphytis melinus (Hymenoptera: Aphelinidae). Biocontrol Sci Tech 22:791–801CrossRefGoogle Scholar
  91. Gotoh T, Sugimoto N, Pallini A, Knapp M, Hernandez-Suarez E, Ferragut F, Ho CC, Migeon A, Navajas M, Nachman G (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp Appl Acarol 52:239–259PubMedCrossRefGoogle Scholar
  92. Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 965:1388–1398CrossRefGoogle Scholar
  93. Gratwick M (1992) Cyclamen mite on glasshouse plants. In: Gratwick M (ed) Crop pests in the UK. Springer, pp 338–340Google Scholar
  94. Grbic M, Van Leeuwen T, Clark R, Rombauts S, Rouze P, Grbic V (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492PubMedPubMedCentralCrossRefGoogle Scholar
  95. Grinberg M, Perl-Treves R, Palevsky E, Shomer I, Soroker V (2005) Interaction between cucumber plants and the broad mite, Polyphagotarsonemus latus: from damage to defense gene expression. Ent Exp Appl 115:135–144CrossRefGoogle Scholar
  96. Hanafi A, Rapisarda C (2017) Integrated pest management and good agricultural practices recommendations in greenhouse crops. In: Rapisarda C, Cocuzza GEM (eds) Integrated pest management in tropical regions. CAB International, Wallingford, pp 204–228Google Scholar
  97. Haque MM, Kawai A (2003) Effect of temperature on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae). Appl Entomol Zool 38:97–101CrossRefGoogle Scholar
  98. Harakly FA, Farag SS (1975) Biological studies on the tomato looper Chrysodeixis chalcites (Esper) in Egypt. Bull Soc Entomol d’Egypte 59:295–299Google Scholar
  99. Hardie J (2017) Life cycles and polyphenism. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd, CAB International, Wallingford, p 81–97Google Scholar
  100. Harris MA, Oetting RD, Gardner WA (1995) Use of entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418CrossRefGoogle Scholar
  101. Hatzinikolis Ε (1986) The genus Tenuipalpus (Acari: Tenuipalpidae) in Greece. Entomol Hell 4:19–22CrossRefGoogle Scholar
  102. Hazan A, Gerson U, Tahori AS (1974) Life history and life tables of the carmine spider mite. Acarologia 15:414–440PubMedGoogle Scholar
  103. Helle W, Sabelis MW (eds) (1985) Spider mites their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  104. Herrmann I, Berenstein M, Paz-Kagan T, Sade A, Karnieli A (2017) Spectral assessment of two-spotted spider mite damage levels in the leaves of greenhouse-grown pepper and bean. Biosyst Eng 157:72–85CrossRefGoogle Scholar
  105. Hulshof J, Ketoja E, Vanninen I (2003) Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Ent Exp Appl 108:19–32CrossRefGoogle Scholar
  106. Hussey N (1972) Diapause in Tetranychus urticae Koch and its implications in glasshouse culture. Acarologia 13:344–350Google Scholar
  107. Ingerson-Mahar J, Eichinger B, Holmstrom K (2015) How does pepper weevil (Coleoptera: Curculionidae) become an important pepper pest in New Jersey? J Integ Pest Manag 6(1):23CrossRefGoogle Scholar
  108. ISSG (2017) View 100 of the world’s worst invasive alien species, Visited on 13 Nov 2017
  109. Jandricic SE, Wraight SP, Bennett KC, Sanderson JP (2010) Developmental times and life table statistics of Aulacorthum solani (Hemiptera: Aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ Entomol 39:1631–1164PubMedCrossRefGoogle Scholar
  110. Jenser G, Szenasi A (2004) Review of the biology and vector capability of Thrips tabaci Lindeman (Thysanoptera: Thripidae). Acta Phytopathol Entomol Hung 39:137–155CrossRefGoogle Scholar
  111. Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, BerkeleyGoogle Scholar
  112. Johnson DT, Garcia M, Rom C, Freeman L, Kim S-H, Lewis B (2016) Management of arthropods on blackberries and raspberries in Arkansas, USA. XI International Rubus and Ribes Symposium 1133:437–444Google Scholar
  113. Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219CrossRefGoogle Scholar
  114. Jones VP, Brown RD (1983) Reproductive responses of the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae) to constant temperature-humidity regimes. Ann Entomol Soc Am 76:466–469CrossRefGoogle Scholar
  115. Jovicich E, Cantliffe DJ, Stoffella PJ, Osborne LS (2008) Predatory mites released on transplants can protect greenhouse-grown peppers from early broad mite infestations. Acta Hort (782):229–233Google Scholar
  116. Kairo MTK, Paraiso O, Gautam DR, Peterkin DD (2013) Cryptolaemus montrouzieri (Mulsant) (Coccinellidae: Scymninae): a review of biology, ecology, and use in biological control with particular reference to potential impact on non-target organisms. CAB Rev 8:005CrossRefGoogle Scholar
  117. Kane EC, Ochoa R, Mathurin G, Erbe EF, Beard JJ (2012) Raoiella indica (Acari: Tenuipalpidae): an exploding mite pest in the neotropics. Exp Appl Acarol 57:215–225PubMedCrossRefGoogle Scholar
  118. Kang L, Chen B, Wei J-N, Liu T-X (2009) Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu Rev Entomol 54:127–145PubMedCrossRefGoogle Scholar
  119. Kasap I (2004) Effect of apple cultivar and of temperature on the biology and life table parameters of the twospotted spider mite Tetranychus urticae. Phytoparasitica 32:73–82CrossRefGoogle Scholar
  120. Katis NI, Tsitsipis JA, Stevens M, Powell G (2007) Transmission of plant viruses. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 353–390CrossRefGoogle Scholar
  121. Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW (eds) Spider mites – their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  122. Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci Agric 67:348–371CrossRefGoogle Scholar
  123. Knapp M, Wagener B, Navajas M (2003) Molecular discrimination between the spider mite Tetranychus evansi Baker & Pritchard, an important pest of tomatoes in southern Africa, and the closely related species T. urticae Koch (Acarina: Tetranychidae). Afr Entomol 11:300–304Google Scholar
  124. Kocourek F, Havelka J, Beránková J, Jaroŝik V (1994) Effect of temperature on development rate and intrinsic rate of increase of Aphis gossypii reared on greenhouse cucumbers. Ent Exp Appl 71:59–64CrossRefGoogle Scholar
  125. Krips OE, Witul A, Willems PEL, Dicke M (1998) Intrinsic rate of population increase of the spider mite Tetranychus urticae on the ornamental crop gerbera: intraspecific variation in host plant and herbivore. Ent Exp Appl 89:159–168CrossRefGoogle Scholar
  126. Legg JP, Shirima R, Tajebe LS, Guastella D, Boniface S, Jeremiah S, Nsami E, Chikoti P, Rapisarda C (2014) Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag Sci 70:1446–1453PubMedCrossRefGoogle Scholar
  127. Lewis T (ed) (1997) Thrips as crop pests. CAB International, WallingfordGoogle Scholar
  128. Li X-W, Jiang H-X, Zhang X-C, Shelton AM, Feng J-N (2014) Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae), a new insect pest in China. PLoS One 9(1):e87725PubMedPubMedCentralCrossRefGoogle Scholar
  129. Li W-D, Zhang P-J, Zhang J-M, Zhang Z-J, Huang F, Bei Y-W, Lin W-C, Lu Y-B (2015a) An evaluation of Frankliniella occidentalis (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) performance on different plant leaves based on life history characteristics. J Insect Sci 15:4PubMedPubMedCentralCrossRefGoogle Scholar
  130. Li X-W, Fail J, Shelton AM (2015b) Female multiple matings and male harassment and their effects on fitness of arrhenotokous Thrips tabaci (Thysanoptera: Thripidae). Behav Ecol Sociobiol 69:1585–1595PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lindquist EE, Amrine JJW (1996) Systematics, diagnoses for major taxa, and keys to families and genera with species on plants of economic importance. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 33–87CrossRefGoogle Scholar
  132. Liu T-X, Kang L, Heinz KM, Trumble J (2009) Biological control of Liriomyza leafminers: progress and perspective. CAB Rev 4:004CrossRefGoogle Scholar
  133. Lommen STE, de Jong PW, Pannebakker BA (2017) It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control – a review. Ent Exp Appl 162:108–123CrossRefGoogle Scholar
  134. Lowe S, Browne M, Boudjelas S, De Poorter M. (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. International Union for the Conservation of Nature and Natural Resources (IUCN), University of AucklandGoogle Scholar
  135. Luypaert G, Witters J, Van Huylenbroeck J, Maes M, De Riek J, De Clercq P (2014) Temperature-dependent development of the broad mite Polyphagotarsonemus latus (Acari: Tarsonemidae) on Rhododendron simsii. Exp Appl Acarol 63:389–400PubMedGoogle Scholar
  136. Mani M, Shivaraju C (eds) (2016) Mealybugs and their management in agricultural and horticultural crops. Sringer, New DehliGoogle Scholar
  137. Maniania NK, Ekesi S, Kungu MM, Salifu D, Srinivasan R (2016) The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Prot 90:49–53CrossRefGoogle Scholar
  138. Marín-Cruz VH, Cibrián-Tovar D, Méndez-Montiel JT, Pérez-Vera OO, Cadena-Meneses JA, Huerta H, Rodríguez-Yam G, Cruz-Rodríguez JA (2015) Biología de Lycoriella ingenua y Bradysia impatiens (Diptera: Sciaridae). Madera Bosques 21:113–128Google Scholar
  139. Martí S, Muñoz C, Casagrande E (2010) El uso de feromonas para el control de Tuta absoluta: primeras experiencias en campo. Phytoma Esp 217:35–40Google Scholar
  140. Martin DE, Latheef MA, López JD (2015) Evaluation of selected acaricides against twospotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data. Exp Appl Acarol 66:227–245PubMedCrossRefGoogle Scholar
  141. Martin JH, Mound LA (2007) An annotated checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492:1–84CrossRefGoogle Scholar
  142. Martin T, Kamal Wijaya A, Gogo EO, Saidi M, Deletre E, Bonafos R, Simon S, Ngouajio M (2014) Repellent effect of an alphacypermethrin treated net against the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J Econ Entomol 107:684–690PubMedCrossRefGoogle Scholar
  143. Mason PG, Cock MJW, Barratt BIP, Klapwijk JN, van Lenteren JC, Brodeur J, Hoelmer KA, Heimpel GE (2018) Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture. BioControl 63:149–154CrossRefGoogle Scholar
  144. Massee A (1937) An eriophyid mite injurious to tomato. Bull Ent Res 28:403–406CrossRefGoogle Scholar
  145. Matille-Ferrero D (1997) The adult female. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 5–21CrossRefGoogle Scholar
  146. Mazzeo G, Longo S, Pellizzari G, Porcelli F, Suma P, Russo A (2014) Exotic scale insects (Coccoidea) on ornamental plants in Italy: a never-ending story. Acta Zool Bulg Suppl 6:55–61Google Scholar
  147. Mesa NC, Ochoa R, Welbourn WC, Evans GA, De Moraes GJ (2009) A catalog of the Tenuipalpidae (Acari) of the world with a key to genera. Zootaxa 2098:1–185CrossRefGoogle Scholar
  148. Messelink GJ (2014) Persistent and emerging pests in greenhouse crops: is there a need for new natural enemies? Bull IOBC/WPRS 102:143–150Google Scholar
  149. Migeon A, Dorkeld F (2006) Spider mites web: a comprehensive database for the Tetranychidae.
  150. Migeon A, Auger P, Hufbauer R, Navajas M (2015) Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae). Biol Invasions 17:2275–2285CrossRefGoogle Scholar
  151. Minkenberg OPJM (1988) Life history of the agromyzid fly Liriomyza trifolii on tomato at different temperatures. Ent Exp Appl 48:73–84CrossRefGoogle Scholar
  152. Minkenberg OPJM (1990) On seasonal inoculative biological control. Governing Liriomyza populations by parasitoids. PhD Thesis. Wageningen Universiy, WageningenGoogle Scholar
  153. Minkenberg OPJM, van Lenteren JC (1986) The leafminers Liriomyza bryoniae and Liriomyza trifolii (Diptera: Agromyzidae), their parasites and host plants: a review. Agric Univ Wageningen Pap 86(2):1–50Google Scholar
  154. Mo T-L, Liu T-X (2006) Biology, life table and predation of Feltiella acarisuga (Diptera: Cecidomyiidae) feeding on Tetranychus cinnabarinus eggs (Acari: Tetranychidae). Biol Control 39:418–426CrossRefGoogle Scholar
  155. Mohaghegh J, De Clercq P, Tirry L (2001) Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hubner) (Lep., Noctuidae): effect of temperature. J Appl Entomol 125:131–134CrossRefGoogle Scholar
  156. Mohrig W, Heller K, Hippa H, Vilkamaa P, Menzel F (2013) Revision of the black fungus gnats (Diptera: Sciaridae) of North America. Stud Dipterol 19:141–286Google Scholar
  157. Moritz G (1997) Structure, growth and development. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 15–63Google Scholar
  158. Moritz G, Mound LA, Morris DC, Goldarazena A (2004) Pest thrips of the world – visual and molecular identification of pest thrips. Cd-rom, CBIT, BrisbaneGoogle Scholar
  159. Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89PubMedCrossRefPubMedCentralGoogle Scholar
  160. Mouden S, Sarmiento KF, Klinkhamer PGL, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73:813–822PubMedPubMedCentralCrossRefGoogle Scholar
  161. Mound LA, Halsey SH (1978) Whitefly of the world. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. Wiley, ChichesterCrossRefGoogle Scholar
  162. Mudavanhu P (2009) An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. MSc thesis, Univ StellenboschGoogle Scholar
  163. Mujica N, Sporleder M, Carhuapoma P, Kroschel J (2017) A temperature-dependent phenology model for Liriomyza huidobrensis (Diptera: Agromyzidae). J Econ Entomol 110:1333–1344PubMedPubMedCentralCrossRefGoogle Scholar
  164. Musa F, Mehmeti A, Musa A (2017) Investigation of the most prevalent aphid species in pepper crop cultivated in greenhouses in Kosovo. 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM 17(32):341–348Google Scholar
  165. Nachman G (1984) Estimates of mean population denisty and spatial distribution of Tetranychus urticae (Acarina: Tetranychidae) and Phytoseiulus persmilis (Acarina: Phytoseiidae) based upon the proportion of empty sampling units. J Appl Ecol:903–913CrossRefGoogle Scholar
  166. Nachman G, Zemek R (2002) Interactions in a tritrophic acarine predator-prey metapopulation system IV: effects of host plant condition on Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 26:43–70PubMedCrossRefGoogle Scholar
  167. Nansen C, Sidumo AJ, Martini X, Stefanova K, Roberts JD (2013) Reflectance-based assessment of spider mite “bio-response” to maize leaves and plant potassium content in different irrigation regimes. Comput Electron Agric 97:21–36CrossRefGoogle Scholar
  168. Naranjo SE, Castle SJ, De Barro PJ, Liu S-S (2010) Population dynamics, demography, dispersal and spread of Bemisia tabaci. In: Stansly P, Naranjo S (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 185–226Google Scholar
  169. Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2017) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact 11:121–131CrossRefGoogle Scholar
  170. Navarro Lopis V, Alfaro C, Vacas S, Primo J (2010) Application de la confusion sexual al control de la polilla del tomate Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Phytoma Espanã 217:35–40Google Scholar
  171. Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511PubMedCrossRefGoogle Scholar
  172. NVWA (2013) Pest report – update pest status – Anthonomus eugenii (Pepper Weevil) eradicated in the Netherlands. Netherlands Food and Consumer Product Safety Authority.
  173. Oldfield GN, Proeseler G (1996) Eriophyoid mites as vectors of plant pathogens. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 259–275CrossRefGoogle Scholar
  174. Onzo A, Houedokoho AF, Hanna R (2011) Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus on the gboma eggplant, Solanum macrocarpon. J Insect Sci 12:1–11CrossRefGoogle Scholar
  175. Palevsky E, Soroker V, Weintraub P, Mansour F, Abo MF, Gerson U (2001) How species-specific is the phoretic relationship between the broad mite Polyphagotarsonemus latus (Acari: Tarsonemidae) and its insect hosts? Exp Appl Acarol 25:217–224PubMedCrossRefGoogle Scholar
  176. Parajulee MN (2007) Influence of constant temperatures on life history parameters of the cotton aphid, Aphis gossypii, infesting cotton. Environ Entomol 36:666–672PubMedGoogle Scholar
  177. Park H-H, Shipp L, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103:563–569CrossRefGoogle Scholar
  178. Park Y-L, Lee J-H (2002) Leaf cell and tissue damage of cucumber caused by twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 95:952–957PubMedCrossRefGoogle Scholar
  179. Park Y-L, Lee J-H (2005) Impact of twospotted spider mite (Acari: Tetranychidae) on growth and productivity of glasshouse cucumbers. J Econ Entomol 98:457–463PubMedCrossRefGoogle Scholar
  180. Parrella MP (1987) Biology of Liriomyza. Annu Rev Entomol 32:201–224CrossRefGoogle Scholar
  181. Parrella MP, Jones VP (1985) Yellow traps as monitoring tools for Liriomyza trifolii (Diptera: Agromyzidae) in Chrysanthemum greenhouses. J Econ Entomol 78:53–56CrossRefGoogle Scholar
  182. Parrella MP, Robb KL, Bethke J (1983) Influence of selected host plants on the biology of Liriomyza trifolii (Diptera: Agromyzidae). Ann Entomol Soc Am 76:112–115CrossRefGoogle Scholar
  183. Pavlidi N, Khalighi M, Myridakis A, Dermauw W, Wybouw N, Tsakireli D, Stephanou EG, Labrou NE, Vontas J, Van Leeuwen T (2017) A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem Mol Biol 80:101–115PubMedCrossRefGoogle Scholar
  184. Peña J, Campbell C (2005) Broad mite. Fact sheet. University of Florida, Institute of Food and Agricultural Sciences, ENY–618Google Scholar
  185. Perdikis D, Kapaxidi E, Papadoulis G (2008) Biological control of insect and mite pests in greenhouse Solanaceous crops. Eur J Plant Sci Biotechnol 2:125–144Google Scholar
  186. Pereyra PC, Sánchez NE (2006) Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 35:671–676PubMedCrossRefGoogle Scholar
  187. Pijnakker J, Ramakers P, Leman A, Stelma J (2010) Literatuurstudie over de rozenschildluis Aulacaspis rosae. Rapport GTB-1026. Wageningen UR Glastuinbouw, BleiswijkGoogle Scholar
  188. Pilkington LJ, Messelink G, van Lenteren JC, Le Mottee K (2010) “Protected biological control” – biological pest management in the greenhouse industry. Biol Control 52:216–220CrossRefGoogle Scholar
  189. Piper R (2011) Pests. A guide to the world’s most maligned, yet misunderstood creatures. Greenwood, Santa BarbaraGoogle Scholar
  190. Pontier KJ, de Moraes GJ, Kreiter S (2000) Biology of Tenuipalpus heveae (Acari, Tenuipalpidae) on rubber tree leaves. Acarologia 41:423–427Google Scholar
  191. Quisenberry SS, Ni X (2007) Feeding injury. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 331–352CrossRefGoogle Scholar
  192. Rapisarda C, Tropea Garzia G, Longo S, Barbagallo S (2003) IPM applications on protected vegetable crops in Sicily. Acta Hort (614):767–774Google Scholar
  193. Rapisarda C, Tropea Garzia G, Cascone G, Mazzarella R, Colombo A, Serges T (2006) UV-absorbing plastic films for the control of Bemisia tabaci (Gennadius) and Tomato Yellow Leaf Curl Disease (TYLCD) on protected cultivations in Sicily (South Italy). Acta Hort (719):597–604Google Scholar
  194. Rashid FF, Hammad SM, Hassan SM (1971) The biology of Autographa chalcites L. in Alexandria region (Lepidoptera: Noctuidae). Bull Soc Entomol d’Egypte 55:419–426Google Scholar
  195. Rebek EJ (2017) Broad mites on blackberries. Pest alerts. Entomology and plant pathology. Oklahoma State University, StillwaterGoogle Scholar
  196. Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla Entomol 92:7–13CrossRefGoogle Scholar
  197. Reitz SR, Gao Y, Lei Z (2013) Insecticide use and the ecology of invasive Liriomyza leafminer management. In: Trdan S (ed) Insecticides – development of safer and more effective technologies. InTech, Rijeka, pp 235–255Google Scholar
  198. Riley DG, Schuster DJ (1994) Pepper weevil adult response to colored sticky traps in pepper fields. Southwest Entomol 19:93–107Google Scholar
  199. Riley DG, Chitturi A, Sparks AN Jr (2007) Does natural deposition of pine pollen affect the ovipositional behavior of Frankliniella occidentalis and Frankliniella fusca? Ent Exp Appl 124:133–141CrossRefGoogle Scholar
  200. Rocha KCG, Silva RA, Michelotto MD, Busoli AC (2006) Aspectos biológicos, morfológicos e comportamentais de Aspidiotus nerii Bouché, 1833 (Hemiptera: Diaspididae). Cienc Rural 36:363–368CrossRefGoogle Scholar
  201. Rodríguez-Cruz FA, Janssen A, Pallini A, Duarte MVA, Pinto CMF, Venzon M (2017) Two predatory mite species as potential control agents of broad mites. BioControl 62:505–513CrossRefGoogle Scholar
  202. Rodríguez-Leyva E, Lomeli-Flores JR, Valdez-Carrasco JM, Jones RW, Stansly PA (2012) New records and locations of parasitoids of the pepper weevil in Mexico. Southwest Entomol 37:73–83CrossRefGoogle Scholar
  203. Rosen D (ed) (1990) Armored scale insects. Their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  204. Rosenheim JA, Welter SC, Johnson MW, Mau RFL, Gusukuma-Minuto LR (1990) Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 834:1519–1525CrossRefGoogle Scholar
  205. Rotenberg D, Jacobson AL, Schneweis DR, Whitfield AE (2015) Thrips transmission of tospoviruses. Curr Opin Virol 15:8089CrossRefGoogle Scholar
  206. Roy A, Hartung JS, Schneider WL, Shao J, Leon G, Melzer MJ, Beard JJ, Otero-Colina G, Bauchan GR, Ochoa R (2015) Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:1013–1025PubMedCrossRefGoogle Scholar
  207. Roy HE, Rabitsch W, Scalera R et al (2018) Developing a framework of minimum standards for the risk assessment of alien species. J Appl Ecol 55:526–538CrossRefGoogle Scholar
  208. Royalty R, Perring T (1996) Nature of damage and its assessment. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 493–512CrossRefGoogle Scholar
  209. Rutherford TA, Trotter DB, Webster JM (1985) Monitoring fungus gnats (Diptera: Sciaridae) in cucumber greenhouses. Can Entomol 117:1387–1394CrossRefGoogle Scholar
  210. Sabelis MW, Bruin J (1996) Evolutionary ecology: Life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites. Their Biology natural enemies and control. Elsevier, Amsterdam, pp 322–366Google Scholar
  211. Sampson C, Kirk WDJ (2013) Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One 8(11):e80787PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sanchez JA, Spina ML, Michelena JM, Lacasa A, Mendoza AHD (2010) Ecology of aphid pests of greenhouse pepper crops and their parasitoids. Biocontrol Sci Tech 21:171–188CrossRefGoogle Scholar
  213. Sannino L, Espinosa B (2010) Tuta absoluta, guida alla conoscenza e recenti acquisizioni per una corretta difesa. Inform Agrar 46(suppl 1):1–113Google Scholar
  214. Schuster DJ (2007) Suppression of Anthonomus eugenii (Coleoptera: Curculionidae) pepper fruit infestation with releases of Catolaccus hunteri (Hymenoptera: Pteromalidae). Biocontrol Sci Tech 17:345–351CrossRefGoogle Scholar
  215. Seal DR (2001) Seasonal abundance and distribution of Thrips palmi Karny (Thysanoptera: Thripidae) in southern Florida. Proc Fla State Hort Soc 114:337–342Google Scholar
  216. Shih C-T, Poe SL, Cromroy HL (1976) Biology, life table, and intrinsic rate of increase of Tetranychus urticae. Ann Entomol Soc Am 69:362–364CrossRefGoogle Scholar
  217. Shin S, Jung S, Heller K, Menzel F, Hong TH, Shin JS, Lee SH, Lee H, Lee S (2015) DNA barcoding of Bradysia (Diptera: Sciaridae) for detection of the immature stages on agricultural crops. J Appl Entomol 139:638–645CrossRefGoogle Scholar
  218. Siscaro G, Biondi A, Haddi K, Rapisarda C, Tropea Garzia G, Zappalà L (2013) Orientamenti di lotta integrata per il contenimento di Tuta absoluta (Meyrick) in Italia. Atti Accad Naz Ital Entomol 60:111–124Google Scholar
  219. Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. Annu Rev Entomol 41:375–406PubMedCrossRefGoogle Scholar
  220. Snoeck S, Greenhalgh R, Tirry L, Clark RM, Van Leeuwen T, Dermauw W (2017) The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Sci Rep 7:13440PubMedPubMedCentralCrossRefGoogle Scholar
  221. Soroker V, Nelson DR, Bahar O, Reneh S, Yablonski S, Palevsky E (2004) Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae). Chemoecology 13:163–168CrossRefGoogle Scholar
  222. Speranza S, Colonelli E, Garonna AP, Laudonia S (2014) First record of Anthonomus eugenii (Coleoptera: Curculionidae) in Italy. Fla Entomol 97:844–845CrossRefGoogle Scholar
  223. Takafuji A, So P-M, Tsuno N (1991) Inter-and intra-population variations in diapause attribute of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Res Popul Ecol 33:331–344CrossRefGoogle Scholar
  224. Takagi S (1990) The adult female. In: Rosen D (ed) Armored scale insects. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 5–20Google Scholar
  225. ten Broeke CJM, Dicke M, van Loon JJA (2013) Feeding behaviour and performance of different populations of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible lettuce. Ent Exp Appl 148:130–141CrossRefGoogle Scholar
  226. Teodoro A, Reis P (2006) Reproductive performance of the mite Brevipalpus phoenicis (Geijskes, 1939) on citrus and coffee, using life table parameters. Braz J Biol 66:899–905PubMedCrossRefGoogle Scholar
  227. Toapanta MA, Schuster DJ, Stansly PA (2005) Development and life history of Anthonomus eugenii (Coleoptera: Curculionidae) at constant temperatures. Environ Entomol 34:999–1008CrossRefGoogle Scholar
  228. Torres-Ruíz A, Rodríguez-Leyva E (2012) Guía para el manejo integrado de plagas del pimiento bajo invernadero, con énfasis en el picudo del chile. Koppert México S.A. de C.V, QueretaroGoogle Scholar
  229. Tropea Garzia G, Siscaro G, Biondi A, Zappalà L (2012) Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. EPPO Bull 42:205–210CrossRefGoogle Scholar
  230. Tsueda H, Tsuchida K (2011) Reproductive differences between Q and B whiteflies, Bemisia tabaci, on three host plants and negative interactions in mixed cohorts. Ent Exp Appl 114:197–207CrossRefGoogle Scholar
  231. Tuovinen T, Lindqvist I (2010) Maintenance of predatory phytoseiid mites for preventive control of strawberry tarsonemid mite Phytonemus pallidus in strawberry plant propagation. Biol Control 54:119–125CrossRefGoogle Scholar
  232. Uchôa-Fernandes MA, Della Lucia TMC, Vilela EF (1995) Mating, oviposition and pupation of Scrobipalpula absoluta (Meyrick) (Lepidoptera: Gelechiidae). Anais Soc Entomol Brasil 24:159–164Google Scholar
  233. Ullah MS, Lim UT (2015) Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J Econ Entomol 108:1000–1009PubMedCrossRefGoogle Scholar
  234. Urbaneja A, Vercher R, Navarro V, García Marí F, Porcun JL (2007) La polilla del tomate, Tuta absoluta. Phytoma España 194:16–23Google Scholar
  235. Vacante V, Gerson U (2011) Integrated control of citrus pests in the Mediterranean region. Bentham E BooksGoogle Scholar
  236. van der Ent S, Knapp M, Klapwijk J, Moerman E, van Schelt J, de Weert S, Dik A, Schulthess F (2017) Knowing and recognizing. The biology of pests, diseases and their natural solutions. Koppert Biological Systems, Berkel en RodenrijsGoogle Scholar
  237. Van Houten YM, Glas JJ, Hoogerbrugge H, Rothe J, Bolckmans KJF, Simoni S, Van Arkel J, Alba JM, Kant MR, Sabelis MW (2013) Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici. Exp Appl Acarol 60:127–138CrossRefGoogle Scholar
  238. Van Houten YM, Hoogerbrugge H, Knapp M, van Schaijk M, Groot TVM (2017) Ways to improve biocontrol of tomato russet mites using predatory mites. Bull IOBC/WPRS 124:189–194Google Scholar
  239. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572PubMedCrossRefGoogle Scholar
  240. Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol 121:12–21PubMedCrossRefGoogle Scholar
  241. Van Lenteren JC (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Biological control, measures of success. Kluwer, Dordrecht, pp 77–103CrossRefGoogle Scholar
  242. Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59CrossRefGoogle Scholar
  243. Van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34PubMedPubMedCentralCrossRefGoogle Scholar
  244. Vazquez E, Dean D, Schuster DJ, Etten PV (2005) A laboratory method for rearing Catolaccus hunteri (Hymenoptera: Pteromalidae), a parasitoid of the pepper weevil (Coleoptera: Curculionidae). Fla Entomol 88:191–194CrossRefGoogle Scholar
  245. Veerman A (1977) Aspects of the induction of diapause in a laboratory strain of the mite Tetranychus urticae. J Insect Physiol 23:703–711CrossRefGoogle Scholar
  246. Vercher R, Calabuig A, Felipe C (2010) Ecología, muestreos y umbrales de Tuta absoluta (Meyrick). Phytoma España 217:23–26Google Scholar
  247. Vierbergen G, Loomans AJM (2016) Thrips setosus (Thysanoptera: Thripidae), the Japanese flower thrips, in cultivation of Hydrangea. Entomol Ber 76:103–108Google Scholar
  248. Viggiani G, Filella F, Delrio G, Ramassini W, Foxi C (2009) Tuta absoluta, nuovo lepidottero segnalato anche in Italia. Inform Agrar 65:66–68Google Scholar
  249. Walton VM, Pringle KL (2005) Developmental biology of vine mealybug, Planococcus ficus (Signoret) (Homoptera: Pseudococcidae), and its parasitiod Coccidoxenoides perminutus (Timberlake) Hymenoptera: Encyrtidae. Afr Entomol 13:143–147Google Scholar
  250. Walton VM, Daane KM, Bentley WJ, Millar JG, Larsen TE, Malakar-Kuenen R (2006) Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards. J Econ Entomol 99:1280–1290PubMedCrossRefGoogle Scholar
  251. Wang H, Reitz SR, Xiang J, Smagghe G, Lei Z (2014) Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly? PLoS One 9(6):e98761PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wang L, Zhang S, Luo J-Y, Wang C-Y, Ly L-M, Zhu X-Z, Li C-A, Cui J-J (2016) Identification of Aphis gossypii glover (Hemiptera: Aphididae) biotypes from different host plants in North China. PLoS One 11(1):e0146345PubMedPubMedCentralCrossRefGoogle Scholar
  253. Waterworth RA, Redak RA, Millar JG (2011) Pheromone-baited traps for assessment of seasonal activity and population densities of mealybug species (Hemiptera: Pseudococcidae) in nurseries producing ornamental plants. J Econ Entomol 104:555–565PubMedCrossRefGoogle Scholar
  254. Weintraub PG, Kleitman S, Mori R, Shapira N, Palevsky E (2003) Control of the broad mites (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L. ) with the predatory mite, Neoseiulus cucumeris (Oudemans). Biol Control 27:300–309CrossRefGoogle Scholar
  255. Weintraub PG, Recht E, Mondaca LL, Harari AR, Diaz BM, Bennison J (2017a) Arthropod pest management in organic vegetable greenhouses. J Integr Pest Manag 8:1–14CrossRefGoogle Scholar
  256. Weintraub PG, Scheffer SJ, Visser D, Valladares G, Correa AS, Shepard BM, Rauf A, Murphy ST, Mujica N, MacVean C, Kroschel J, Kishinevsky M, Joshi RC, Johansen NS, Hallett RH, Civelek HS, Chen B, Metzler HB (2017b) The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): understanding its pest status and management globally. J Insect Sci 17(1):28PubMedCentralCrossRefPubMedGoogle Scholar
  257. Wilkinson JD, Daughtery DM (1970) Comparative development of Bradysia impatiens (Diptera: Sciaridae) under constant and variable temperatures. Ann Entomol Soc Am 63:1079–1083CrossRefGoogle Scholar
  258. Ximénez-Embún MG, Ortego F, Castañera P (2016) Drought-stressed tomato plants trigger bottom–up effects on the invasive Tetranychus evansi. PLoS One 11:e0145275PubMedPubMedCentralCrossRefGoogle Scholar
  259. Ximénez-Embún MG, Castañera P, Ortego F (2017a) Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J Insect Physiol 96:73–81PubMedCrossRefGoogle Scholar
  260. Ximénez-Embún MG, Glas JJ, Ortego F, Alba JM, Castañera P, Kant MR (2017b) Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. Exp Appl Acarol 73:297–315PubMedPubMedCentralCrossRefGoogle Scholar
  261. Yadav R, Chang N-T (2014) Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J Insect Sci 14(1):78PubMedPubMedCentralCrossRefGoogle Scholar
  262. Yovkova M, Petrović-Obradović O, Tasheva-Terzieva E, Pencheva A (2013) Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria. ZooKeys 319:347–361CrossRefGoogle Scholar
  263. Zhang Z-Q (2003) Mites of greenhouses: identification, biology and control. CAB International, WallingfordCrossRefGoogle Scholar
  264. Zhu L, Wang Z-H, Gong Y-J, Cao L-J, Wei S-J (2017) Effect of temperature on the development of Echinothrips americanus Morgan (Thysanoptera: Thripidae) with special reference to the number of generations. J Asia-Pacif Entomol 20:1197–1203CrossRefGoogle Scholar
  265. Zuim V, Rodriques HS, Pratissoli D, Torres JB (2017) Thermal requirements and performance of the parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) on Helicoverpa armigera (Lepidoptera: Noctuidae) eggs under variable temperatures. Environ Entomol 46:1156–1164PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Markus Knapp
    • 1
    Email author
  • Eric Palevsky
    • 2
  • Carmelo Rapisarda
    • 3
  1. 1.R&D EntomologyKoppert Biological SystemsBerkel en RodenrijsThe Netherlands
  2. 2.Department of Entomology, Newe-Ya’ar Research CenterAgricultural Research Organization, Ministry of AgricultureRamat YishayIsrael
  3. 3.Dipartimento di Agricoltura, Alimentazione e AmbienteUniversità degli StudiCataniaItaly

Personalised recommendations