Advertisement

Integrated Pest and Disease Management in Greenhouse Ornamentals

  • Margery DaughtreyEmail author
  • Rose Buitenhuis
Chapter
  • 58 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Greenhouse ornamentals are part of a 55 billion USD global ornamentals industry. They present one of the greatest challenges to integrated pest and disease (IPDM) management because the crops are so diverse and often the entire plant must be aesthetically pleasing. Crop propagules are exchanged between continents, and new species and genera of host plants, pests and pathogens are being introduced constantly. This chapter notes the new or re-emerging insect, mite and disease problems that have been problematic in greenhouse ornamentals since the turn of the century. Public preference for ornamentals free from chemical residues is driving constant refinement of sustainable pest management methods. Production systems are unique for bedding plants, foliage plants, flowering potted plants, and cut flowers and foliage plants; these difference affect the key pests and diseases and IPDM approaches. The second section of the chapter covers tools and techniques for IPDM: monitoring, the systems approach, plant-based solutions; environmental solutions and control agents. A detailed thought process on how to manage western flower thrips is offered as an example of the integrated strategy needed to successfully manage a pest (and the viruses it vectors). Methods for extending information to growers are highlighted.

Keywords

Greenhouse Floriculture Pests Diseases Systems approach Biological control Monitoring Integrated pest management Invasive species Western flower thrips 

References

  1. Adkins S, Hammond J, Gera A et al (2006) Biological and molecular characterization of a new carmovirus isolated from Angelonia. Phytopathology 96:460–467PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anonymous (2010) Plantago asiatica mosaic virus on Lilium spp. Pest report – The Netherlands. Plant Protection Service of the Netherlands, Wageningen, pp 1–2Google Scholar
  3. APHIS-PPQ (2004) Minimum sanitation protocols, testing and sampling plan for off-shore production facilities. 2 November 2004. USDA-APHIS- PPQ, Pest Detection and Management Programs, Riverdale, MDGoogle Scholar
  4. Baker CA, Breman L, Jones L (2006) Alternanthera mosaic virus found in Scutellaria, Crossandra and Portulaca spp. in Florida. Plant Dis 90:833–833Google Scholar
  5. Bale JS, Van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos T Roy Soc B 363:761–776CrossRefGoogle Scholar
  6. Belanger RR, Bowen PA, Ehret DL et al. (1995) Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336CrossRefGoogle Scholar
  7. Ben-Yakir D, Antignus Y, Offir Y et al (2013) Optical manipulations: an advance approach for reducing sucking insect pests. In: Ishaaya I, Palli S, Horowitz A (eds) Advanced technologies for managing insect pests. Springer, DordrechtGoogle Scholar
  8. Berger L (2014) Canine detection of citrus canker may show HLB application promise. Citrograph Magazine 5(4):22–27. http://citrusresearch.org/wp-content/uploads/CRB-Citrograph-Mag-Fall2014-Final-Web.pdfGoogle Scholar
  9. Bocsanczy AM, Yuen JMF, Palmateer AJ et al (2014) Comparative genomics of Ralstonia solanacearum strain P781 that infects Mandevilla and Dipladenia plants. Phytopathology 104(Suppl. 3):S3.16Google Scholar
  10. Bonde M, Murphy CA, Bauchan GR et al (2015) Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105:91–98PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bouagga S, Urbaneja A, Rambla JL et al (2018) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64CrossRefGoogle Scholar
  12. Bratsch S, Lockhart BEL, Mollov D (2017) Characterization of a new nepovirus causing a leaf mottling disease in Petunia hybrida. Plant Dis 101:1017–1021PubMedCrossRefPubMedCentralGoogle Scholar
  13. Braun SE, Sanderson JP, Nelson EB et al (2009) Fungus gnat feeding and mechanical wounding inhibit Pythium aphanidermatum infection of geranium seedlings. Phytopathology 99:1421–1428PubMedCrossRefPubMedCentralGoogle Scholar
  14. Braun SE, Sanderson JP, Daughtrey ML et al (2012) Attraction and oviposition responses of the fungus gnat Bradysia impatiens to microbes and microbe-inoculated seedling in laboratory bioassays. Entomol Exp Appl.  https://doi.org/10.1111/j.1570-7458.2012.01315.xCrossRefGoogle Scholar
  15. Brielmaier-Liebetanz U, Field AE, Warfield CY et al (2015) Powdery mildew (Erysiphaceae) on Calibrachoa hybrids in Germany, Nicaragua and the USA. Plant Pathol Quar 5:1–5CrossRefGoogle Scholar
  16. Buitenhuis R (2014) Systems approach : integrating IPM in the production system. Temperate Clim IOBC-WPRS Bull 102:37–43Google Scholar
  17. Buitenhuis R, Shipp JL (2006) Factors influencing the use of trap plants for the control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse potted chrysanthemum. Environ Entomol 35(5):1411–1416CrossRefGoogle Scholar
  18. Buitenhuis R, Shipp L, Jandricic S et al (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63(9):910–917CrossRefGoogle Scholar
  19. Buitenhuis R, Glemser E, Brommit A (2014) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Tech 24(10):1153–1166.  https://doi.org/10.1080/09583157.2014.930726CrossRefGoogle Scholar
  20. Buitenhuis R, Murphy G, Shipp L et al (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65:451–464PubMedCrossRefPubMedCentralGoogle Scholar
  21. Buitenhuis R, Brownbridge M, Brommit A, Saito T, Murphy G (2016) How to start with a clean crop: biopesticide dips reduce populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on greenhouse poinsettia propagative cuttings. Insects 7(4):48PubMedCentralCrossRefPubMedGoogle Scholar
  22. Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):1–14CrossRefGoogle Scholar
  23. CABI (2017) Thrips palmi (melon thrips). https://www.cabi.org/isc/datasheet/53745
  24. California Department of Food and Agriculture (2018) Light brown apple moth pest profile. https://www.cdfa.ca.gov/plant/pdep/target_pest_disease_profiles/LBAM_PestProfile.html
  25. Celio G, Hausbeck M (1998) Conidial germination, infection structure formation, and early colony development of powdery mildew on poinsettia. Phytopathology 88:105–113CrossRefGoogle Scholar
  26. Chau A, Heinz KM (2006) Manipulating fertilization: a management tactic against Frankliniella occidentalis on potted chrysanthemum. Entomol Exp Appl 120(3):201–209CrossRefGoogle Scholar
  27. Chau A, Heinz KM, Davies FT (2005) Influences of fertilization on Aphis gossypii and insecticide usage. J Appl Entomol 129:89–97CrossRefGoogle Scholar
  28. Chase AR, Daughtrey ML, Cloyd RA (2018) Compendium of bedding plant diseases and pests. American Phytopathological Society, St. Paul, p 170Google Scholar
  29. Chen J, Henny RJ (2006) Ornamental foliage plants: improvement through biotechnology, Chapter 9 In: Recent advances in plant biotechnology and its applicationsGoogle Scholar
  30. Chen CC, Chen TC, Lin YH et al (2005a) A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to watermelon silver mottle virus. Plant Dis 89:440–445PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen J, McConnell D, Henny RJ et al (2005b) The foliage plant industry. Chapter 2 In: Janick J (ed) The foliage plant industry. Horticultural Reviews, vol 31, pp 45–110CrossRefGoogle Scholar
  32. Chow A et al (2012) Reducing fertilization: a management tactic against western flower thrips on roses. J Appl Entomol 136(7):520–529CrossRefGoogle Scholar
  33. Cloyd R, Dickinson A, Larson RA et al (2007) Effect of growing media and their constituents on fungus gnat, Bradysia sp. nr. Coprophila (Lintner) adults. Insect Sci 14:467–475.  https://doi.org/10.1111/j.1744-7917.2007.00175.xCrossRefGoogle Scholar
  34. Conijn CGM (1992) Hot water treatment and cold storage to control the bulb mite Rhizoglyphus robini on lily bulbs. VI Int Symp Flower Bulbs 325:797–808Google Scholar
  35. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400PubMedCrossRefGoogle Scholar
  36. Copes WE (2017) Sanitation for management of florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management.  https://doi.org/10.1007/978-3-319-32374-9_9-1Google Scholar
  37. Cotter SC et al (2011) Macronutrient balance mediates trade-offs between immune function and life history traits. Funct Ecol 25:186–198CrossRefGoogle Scholar
  38. Cuthbertson AGS, Blackburn LF, Eyre DP et al (2011) Bemisia tabaci: the current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci 18:1–10CrossRefGoogle Scholar
  39. Datnoff LE, Elmer, WH (2017) Mineral nutrition and florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management,  https://doi.org/10.1007/978-3-319-32374-9_10-1Google Scholar
  40. Daughtrey M (2012) Impatiens downy mildew rocks the bedding plant industry. IR-4 Newsletter 43:9–11. http://ir4.rutgers.edu/Newsletter/vol43no4qxp.pdf
  41. Daughtrey M (2014) What turned the bedding plant industry topsy-turvy: impatiens downy mildew. In: Palmer C (ed) Proceedings, 30th annual pest and production management conference. Society of American Florists. San Diego, CA. February 22, 2014, pp 1–11Google Scholar
  42. Daughtrey ML, Benson DM (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169PubMedCrossRefGoogle Scholar
  43. Daughtrey M, Tobiasz M (2008) Comparison of verbena cultivars for susceptibility to powdery mildew, 2007. PDMR 2:OT013Google Scholar
  44. Daughtrey ML, Holcomb GE, Eshenaur B, Palm ME, Belbahri L, Lefort F (2006) First report of downy mildew on greenhouse and landscape coleus caused by a Peronospora sp. in Louisiana and New York. Plant Dis 90:1111PubMedCrossRefGoogle Scholar
  45. Daughtrey M, Harlan, B, Linderman, S et al (2014) Coleus cultivars and downy mildew. Special Research Report #136, American Floral Endowment. http://endowment.org/wp-content/uploads/2013/03/136-ColeusDM-Cv-2014.pdf
  46. Daughtrey ML, Chase AR (2016) Diseases of poinsettia. In: McGovern R, Elmer WH (eds) Handbook of florists’ crops diseases. Handbook of Plant Disease Management, Springer Cham.  https://doi.org/10.1007/978-3-319-32374-9_39-1Google Scholar
  47. Deng Z (2017) Breeding for disease resistance in florists’ crops. In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer, pp 1–31. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_4-1
  48. Dennehy TJ, Degain BA, Harpold VS et al (2005) New challenges to management of whitefly resistance to insecticides in Arizona. The University of Arizona College of Agriculture and Life Sciences 2005 Vegetable Report. http://www.ag.arizona.edu/pubs/crops/az1382/az1382_2.pdf
  49. Dickey AM, Kumar V, Hoddle MS et al (2015) The Scirtothrips dorsalis species complex: endemism and invasion in a global pest. PLoS One 10:e0123747.  https://doi.org/10.1371/journal.pone.0123747CrossRefPubMedPubMedCentralGoogle Scholar
  50. Duarte LML, Toscano AN, Alexandre MAV, Rivas EB and Harakava R (2008) Identificacao e controle do Alternanthera mosaic virus isolado de Torenia sp. (Scrophulariaceae). Revista Brasileina de Horticultura Ornamental 14(1):59–66Google Scholar
  51. El-Hamalawi ZA (2008a) Acquisition, retention and dispersal of soilborne plant pathogenic fungi by fungus gnats and moth flies. Ann Appl Biol 153:195–203Google Scholar
  52. El-Hamalawi ZA (2008b) Attraction, acquisition, retention and spatiotemporal distribution of soilborne plant pathogenic fungi by shore flies. Ann Appl Biol 152:169–177CrossRefGoogle Scholar
  53. El-Hamalawi ZA, Stanghellini ME (2005) Disease development on Lisianthus following aerial transmission of fusarium avenaceum by adult shore flies, fungus gnats, and moth flies. Plant Dis 89:619–623PubMedCrossRefGoogle Scholar
  54. Enzenbacker T, Naegele P, Hausbeck MK (2015) Susceptibility of greenhouse ornamentals to Phytophthora capsici and P. tropicalis. Plant Dis 99:1808–1815CrossRefGoogle Scholar
  55. Eshenaur BC, Jarlfors VE, Kelly KA, O’Mara J (1995) Detection of a virus infecting portulaca hybrids in Kentucky and Kansas greenhouses. (Abstr.). Phytopathology 85:1171Google Scholar
  56. Faust, JE., Dole, JM, Lopez, RG (2017) The floriculture vegetative cutting industry. Chapter 3 in Horticultural reviews, Volume 44, First Edition. Janick J (ed) Wiley-BlackwellGoogle Scholar
  57. Favrin RJ, Rahe JE, Mauza B (1988) Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Dis 72:683–687CrossRefGoogle Scholar
  58. FNGLA (Florida Nursery, Growers and Landscape Association) (2018). https://www.fngla.org/about/
  59. Frewin AJ, Scott-Dupree C, Murphy G et al (2014) Demographic trends in mixed Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species populations in commercial poinsettia under biological control- and insecticide-based management. J Econ Entomol 107:1150–1155PubMedCrossRefGoogle Scholar
  60. Garibaldi A, Minuto A, Bertetti D et al (2004) Fusarium wilt of gerbera in soil and soilless crops in Italy. Plant Dis 88(3):311.  https://doi.org/10.1094/PDIS.2004.88.3.311CCrossRefPubMedGoogle Scholar
  61. Gerlacher WWP, Shubert R (2001) A new wilt of cyclamen caused by Phytophthora tropicalis in Germany and the Netherlands. Plant Dis 85:334CrossRefGoogle Scholar
  62. Gillespie DR, Vernon RS (2014) Trap catch of Western flower thrips (Thysanoptera: Thripidae) as affected by color and height of sticky traps in mature greenhouse cucumber crops. J Econ Entomol 83(3):971–975CrossRefGoogle Scholar
  63. Gladstone LA, Moorman GW (1989) Pythium root rot of seedling geraniums with various concentrations of nitrogen, phosphorous and sodium chloride. Plant Dis 73:733–736CrossRefGoogle Scholar
  64. Goldberg NP, Stanghellini ME (1990) Ingestion-egestion and aerial transmission of Pythium aphanidermatum by shore flies (Ephydrinae: Scatella stagnalis). Phytopathology 80:1244–1246CrossRefGoogle Scholar
  65. Graham JH, Timmer NH (1991) Peat-based media as a source of Thielaviopsis basicola causing black root rot on citrus seedlings. Plant Dis 75:1246–1249CrossRefGoogle Scholar
  66. Gullino ML, Garibaldi A (2017) Environment modification for disease management. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management.  https://doi.org/10.1007/978-3-319-32374-9_5-1Google Scholar
  67. Gullino ML, Wardlow LR (1999) Ornamentals. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Developments in plant pathology, vol 14. Springer, DordrechtGoogle Scholar
  68. Hagan AK (2009) Reaction of zinnia selections to bacterial leaf spot, 2007. PDMR 3:OT016Google Scholar
  69. Hara AH, Jacobsen CM (2005) Hot water immersion for surface disinfestation of Maconellicoccus hirsutus (Homoptera: Pseudococcidae). J Econ Entomol 98(2):284–288PubMedCrossRefPubMedCentralGoogle Scholar
  70. Harlan BR, Granke L, Hausbeck MK (2017) Epidemiology and management of impatiens downy mildew in the United States. Acta Hortic 1170:1051–1056CrossRefGoogle Scholar
  71. Harris MA (1995) Dissemination of the phytopathogen Thielaviopsis basicola by the fungus gnat Bradysia coprophila and biological control of these pests by Fusarium proliferatum and steinernematid nematodes. Doctoral dissertation, University of Georgia, AthensGoogle Scholar
  72. Harris MA, Oetting RD, Gardner WA (1995) Use of Entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418CrossRefGoogle Scholar
  73. Hausbeck MK, Harlan BR (2012) Evaluation of new fungicide products for control of botrytis on poinsettia, 2011. PDMR 6:OT007Google Scholar
  74. Hausbeck MK, Courtney SE, Harlan BR (2016) Evaluation of a biopesticide for the control of Rhizoctonia root rot of zinnia, 2016. PDMR 10:OT004Google Scholar
  75. Hausbeck MK, Harlan BR, Courtney SE (2017) Evaluation of experimental fungicides and biopesticides againt botrytis blight on poinsettia, 2016. PDMR 11:OT030Google Scholar
  76. Hewitt LC, Shipp L, Buitenhuis R et al (2015) Seasonal climatic variations influence the efficacy of predatory mites used for control of flower thrips in greenhouse ornamental crops. Exp Appl Acarol 65(4):435–450CrossRefGoogle Scholar
  77. Hogendorp BK, Cloyd RA, Swiader JM (2009) Effect of silicon-based fertilizer applications on the reproduction and development of the citrus mealybug (Hemiptera: Pseudococcidae) feeding on green coleus. J Econ Entomol 102(6):2198–2208PubMedCrossRefPubMedCentralGoogle Scholar
  78. Holcomb GE, Owings AD, Broyles CA (2007) Reaction of zinnia cultivars to bacterial leaf spot, 2006. PDMR 1:OT006Google Scholar
  79. Holden MH, Ellner SP, Lee DH et al (2012) Designing an effective trap cropping strategy: the effects of attraction, retention and plant spatial distribution. J Appl Ecol 49(3):715–722Google Scholar
  80. Hong C, Richardson PA, Kong P (2008) Pathogenicity to ornamental plants of some existing species and new taxa of Phytophthora from irrigation water. Plant Dis 92:1201PubMedCrossRefPubMedCentralGoogle Scholar
  81. Huang N, Enkegaard A, Osborne LS et al (2011) The banker plant method in biological control. Crit Rev Plant Sci 30(3):259–278CrossRefGoogle Scholar
  82. Ingerslew KS, Finke DL (2017) Mechanisms underlying the nonconsumptive effects of parasitoid wasps on aphids. Environ Entomol 46(1):75–83PubMedPubMedCentralGoogle Scholar
  83. Jandricic SE (2017) Potential for A. limonicus to control whitefly in greenhouse ornamental crops under cool weather conditions: preliminary tests in a commercial greenhouse. IOBC-WPRS Bulletin 124:119–124Google Scholar
  84. Jandricic S, Sanderson, J (2010) Outfoxing the foxglove aphid. GrowerTalks. https://www.growertalks.com/Article/?articleid=22606
  85. Jandricic SE, Wraight SP, Bennett KC et al (2010) Developmental times and life table statistics of Aulacorthum solani (Hemiptera: Aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ Entomol 39(5):1631–1642CrossRefGoogle Scholar
  86. Jandricic SE, Schmidt D, Bryant G et al (2016) Non-consumptive predator effects on a primary greenhouse pest: predatory mite harassment reduces western flower thrips abundance and plant damage. Biol Control 95:5–12CrossRefGoogle Scholar
  87. Kalb DW, Millar RL (1986) Dispersal of Verticillium albo-atrum by the fungus gnats (Bradysia impatiens). Plant Dis 70:752–753CrossRefGoogle Scholar
  88. Karthikeyan M, Bhaskaran R, Mathiyazhagan S et al (2007) Influence of phylloplane colonizing biocontrol agents on the black spot of rose caused by Diplocarpon rosae. J Plant Interact 2(4):225–231.  https://doi.org/10.1080/17429140701701071CrossRefGoogle Scholar
  89. Keach JE, Bridgen MP (2015) Towards improvement of impatiens. Combined Proc Int Plant Propagators’ Soc 65:317–325Google Scholar
  90. Keach J, Daughtrey M, Bridgen M et al (2016) Susceptibility of Impatiens species to downy mildew caused y Plasmopara obducens. (Abstr.). Phytopathology 106:S2.1.  https://doi.org/10.1094/PHYTO-106-4-S2.1CrossRefGoogle Scholar
  91. Kenneth RG (1981) Downy mildews of graminaceous crops. Chapter 18. In: Spencer DM (ed) The downy mildews. Academic, London. 636 ppGoogle Scholar
  92. Kim SH, Forer LB, Longenecker JL (1975) Recovery of plant pathogens from commercial peat products. Proc Am Phytopathol Soc 2:124Google Scholar
  93. Kirk WDJ. (2002) The pest and vector from the west: Frankliniella occidentalis. In: Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera, vol 586, pp 1–10Google Scholar
  94. Kiss L, Jankovics T, Kovács GM et al (2008) Oidium longipes, a new powdery mildew fungus on petunia in the USA: a potential threat to ornamental and vegetable solanaceous crops. Plant Dis 92:818–825PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kos SP, Klinkhamer PGL, Leiss KA (2014) Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomol Exp Appl 151(3):198–208.  https://doi.org/10.1111/eea.12185CrossRefGoogle Scholar
  96. Kraus J, Cleveland S, Putnam ML et al (2010) A new Potyvirus sp. infects verbena exhibiting leaf mottling symptoms. Plant Dis 94:1132–1136PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lecomte C, Alabouvette C, Edel-Hermann V et al (2016) Biological control of ornamental crop diseases caused by fusarium oxysporum: a review. Biol Control 101:17–30CrossRefGoogle Scholar
  98. Lee DH, Nyrop JP, Sanderson JP (2009) Attraction of Trialeurodes vaporariorum and Bemisia argentifolii to eggplant, and its potential as a trap crop for whitefly management on greenhouse poinsettia. Entomol Exp Appl 133(2):105–116CrossRefGoogle Scholar
  99. Lewis WJ, van Lenteren JC, Phatak SC et al (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci U S A 94(23):12243–12248PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lindquist RK, Faber WR, Casey ML (1985) Effect of various soilless root media and insecticides on fungus gnats. HortScience 20:358–360Google Scholar
  101. Liu Y (2011) Semi-commercial ultralow oxygen treatment for control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on harvested iceberg lettuce. Postharvest Biol Technol 59:138–142CrossRefGoogle Scholar
  102. Liu H-Y, Sears JL, Morrison RH (2003) Isolation and characterization of a Carmo-like virus from Calibrachoa plants. Plant Dis 87:167–171PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lockhart BEL, Daughtrey ML (2008) First report of Alternanthera mosaic virus infection in Angelonia in the United States. Plant Dis 92:1473. http://dx.doi.org/10.1094/PDIS-92-10-1473BPubMedCrossRefPubMedCentralGoogle Scholar
  104. Macdonald WN et al (2013) Review: improving nitrogen use efficiency of potted chrysanthemum: strategies and benefits. Can J Plant Sci 93:1009–1016CrossRefGoogle Scholar
  105. MacKenzie CL, Bethke JA, Byrne FJ et al (2012) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 105(3):753–766CrossRefGoogle Scholar
  106. Martinelli F, Scalenghe R, Davino S et al (2015) Advanced methods of plant disease detection. Rev Agron Sustain Dev 35(1):1–25.  https://doi.org/10.1007/s13593-014-0246-1CrossRefGoogle Scholar
  107. Mattson NS, Leatherwood WR (2010) Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 45(1):43–47CrossRefGoogle Scholar
  108. McGovern RJ, Elmer WH (2017) Florists’ crops: global trends and disease. In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_16-1
  109. McMurtry JA, Moraes GJ, De SNF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae). Syst Appl Acarol 18(4):297–320Google Scholar
  110. McNamara DG, Loebenstein G, Hammond J (1996) The preparation of international certification and classification schemes for ornamental crops. Acta Hortic 432:212–217CrossRefGoogle Scholar
  111. McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog.  https://doi.org/10.1094/PHP-2002-0510-01-RVCrossRefGoogle Scholar
  112. Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Integrated pest management and pest control – current and future tactics, pp 191–214Google Scholar
  113. Messelink GJ, Bennison J, Alomar O et al (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59(4):377–393CrossRefGoogle Scholar
  114. Minuto A, Gullino ML, Garibaldi A (2007) Gerbera jamesonii, Osteospermum sp. and Argyranthemum frutescens: new hosts of Fusarium oxysporum f. sp. chrysanthemi. J Phytopathol 155(6):373–376CrossRefGoogle Scholar
  115. Mollov DS, Hayslett MC, Eichstaedt KA et al (2007) Identification and characterization of a carlavirus causing veinal necrosis of coleus. Plant Dis 91(6):754–757.  https://doi.org/10.1094/PDIS-91-6-0754CrossRefPubMedPubMedCentralGoogle Scholar
  116. Moorman GW (2000) Biology of Pythium root rot. AFE Special Research Report #103, American Floral Endowment. https://hortscans.ces.ncsu.edu/uploads/b/i/biology__582de5f097e86.pdf
  117. Murphy GD (2002) Biological and integrated control in ornamentals in North America: successes and challenges. IOBC/WPRS Bull 25:197–201Google Scholar
  118. Naher M, Motohash K, Watanabe H et al (2011) Phytophthora chrysanthemi sp. nov., a new species causing root rot of chrysanthemum in Japan. Mycol Prog 10:21–31CrossRefGoogle Scholar
  119. Nakamura M, Ohzono M, Iwai H et al (2006) Anthracnose of Sansevieria trifasciata caused by Colletotrichum sansevieriae sp. nov. J Gen Plant Pathol 72:253–256CrossRefGoogle Scholar
  120. Nansen C (2016) The potential and prospects of proximal remote sensing of arthropod pests. Pest Manag Sci 72(4):653–659PubMedCrossRefPubMedCentralGoogle Scholar
  121. Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17(8):1210PubMedCentralCrossRefGoogle Scholar
  122. Orlikowski LB, Trzewik A, Wiejacha K et al (2006) Phytophthora tropicalis, a new pathogen of ornamental plants in Poland. J Plant Prot Res 46:103–109Google Scholar
  123. Osouli S, Ziaie F, Nejad KHI (2013) Application of gamma irradiation on eggs, active and quiescence stages of Tetranychus urticae Koch as a quarantine treatment of cut flowers. Radiat Phys Chem 90:111–119CrossRefGoogle Scholar
  124. Palmer CL, Vea E (2017) Fungicides and biocontrols for management of florists crop diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management.  https://doi.org/10.1007/978-3-319-32374-9_7-1Google Scholar
  125. Parrella MP, Costamagna T (2006) The addition of potassium silicate to the fertilizer mix to suppress Liriomyza leafminers attacking chrysanthemums. IOBC/WPRS Bull 29:159–162Google Scholar
  126. Pasura A, Elliott G (2007) Efficacy of microbial inoculants for control of blackleg disease of geranium in soilless potting mixes, 2006. PDMR 1:OT010Google Scholar
  127. Paulitz T, Belanger R (2002) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133CrossRefGoogle Scholar
  128. Pinto-Zevallos DM, Vänninen I (2013) Yellow sticky traps for decision-making in whitefly management: what has been achieved? Crop Prot 47:74–84CrossRefGoogle Scholar
  129. Povey S et al (2013) Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J Anim Ecol 83:245–255PubMedPubMedCentralCrossRefGoogle Scholar
  130. Prado SG, Jandricic SE, Frank SD (2015) Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6(2):538–575PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ranger CM, Singh AP, Frantz JM et al (2009) Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ Entomol 38:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  132. Reynolds OL, Padula MP, Zeng R et al (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744PubMedPubMedCentralCrossRefGoogle Scholar
  133. Romero W (2011). Development of reduced risk control strategies for western flower thrips and silverleaf whitefly associated with chrysanthemum and poinsettia cuttings. Thesis, University of GuelphGoogle Scholar
  134. Rosetta R (2014) Poinsettia thrips. Pacific Northwest Nursery IPM. Oregon State University. http://oregonstate.edu/dept/nurspest/poinsettia_thrips.htm
  135. Rosskopf EN, Kokalis-Burelle N, Fennimore SA et al (2017) Soil/media disinfestation for management of florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management.  https://doi.org/10.1007/978-3-319-32374-9_7-1Google Scholar
  136. Salinas J, Glandorf DCM, Picavet ED et al (1989) Effects of temperature, relative humidity and age of conidia on the incidence of spotting on gerbera flowers caused by Botrytis cinerea. Neth J Plant Pathol 95:1–64CrossRefGoogle Scholar
  137. Salman M, Abuamsha R (2012) Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato. BioControl 57:711–718CrossRefGoogle Scholar
  138. Sampson C, Kirk WDJ (2013) Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One 8(11):e80787PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schmidt RA (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62(1):1–17PubMedCrossRefGoogle Scholar
  140. Scott-Brown AS, Hodgetts J, Hall J et al (2017) Potential role of botanic garden collections in predicting hosts at risk globally from invasive pests: a case study using Scirtothrips dorsalis. J Pest Sci:1–11.  https://doi.org/10.1007/s10340-017-0916-2CrossRefGoogle Scholar
  141. Shelp BJ et al (2017) Optimizing supply and timing of nitrogen application for subirrigated potted chrysanthemums. Can J Plant Sci 97:17–19Google Scholar
  142. Shinoyama H, Mitsuhara I, Ichikawa H et al (2015) Transgeneic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic 1087:485–497CrossRefGoogle Scholar
  143. Shipp JL, Gillespie TJ (1993) Influence of temperature and water vapor pressure deficit on survival of Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol 22:726–732CrossRefGoogle Scholar
  144. Silagyi AJ, Dixon WN (2006) Assessment of chilli thrips, Scirtothrips dorsalis Hood, in Florida. Florida Cooperative Agricultural Pest Survey Program Report No. 2006–08-SDS-01. http://mrec.ifas.ufl.edu/lso/DOCUMENTS/S%20dorsalis%20write-up%2010-2-2006%20FINAL.pdf
  145. Skinner M, Frank Sullivan CE, Gouli S et al (2013) Granular formulations of insect-killing fungi in combination with plant-mediated IPM systems for thrips. American Floral Endowment Special Research Report #216Google Scholar
  146. Skirvin D (2011) Chasing the dream: a systems modelling approach to biological control. Acta Hortic 916:129–140CrossRefGoogle Scholar
  147. Smith T (2015) Western flower thrips, management and tospoviruses. University of Massachusetts, Amherst. Online Fact Sheet. https://ag.umass.edu/greenhouse-floriculture/fact-sheets/western-flower-thrips-management-tospovirusesGoogle Scholar
  148. Spiers JD et al (2011) Fertilization affects constitutive and wound-induced chemical defenses in Gerbera jamesonii. J Environ Hortic 29(4):180–184Google Scholar
  149. Sulecki JC (2015) Survey snapshot shows biocontrols mainstreaming. Greenhouse Grower, AprilGoogle Scholar
  150. Summerfield A, Grygorczyk A, Buitenhuis. et al (2015) Now putting the bios in charge. Greenhouse Canada Magazine, August. https://www.greenhousecanada.com/inputs/biocontrols/now-putting-the-bios-in-charge-30555
  151. Summerfield A (2019) Biocontrol thriving in Canadian floriculture greenhouses. Greenhouse Canada, March/April 28–30Google Scholar
  152. Swiecki TJ, MacDonald JD (1988) Histology of chrysanthemum roots exposed to salinity stress and Phytophthora cryptogea. Can J Bot 66(2):280–288.  https://doi.org/10.1139/b88-046CrossRefGoogle Scholar
  153. Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric For Meteorol 143:159–175CrossRefGoogle Scholar
  154. Troisi M, Gullino ML, Garibaldi A (2009) Gerbera jamesonii, a new host of Fusarium oxysporum f. sp. tracheiphilum. J Phytopathol 158:8–14CrossRefGoogle Scholar
  155. Trolinger JC, McGovern RJ, Elmer WH et al (2017) Diseases of chrysanthemum In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_16-1Google Scholar
  156. USDA National Agricultural Statistics Service. Floriculture Crops 2010 Summary, April 2011. http://usda.mannlib.cornell.edu/usda/nass/FlorCrop//2010s/2011/FlorCrop-04-21-2011_revision.pdf
  157. USDA National Agricultural Statistics Service. Floriculture Crops 2015 Summary, April 2016. http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-26-2016.pdf
  158. van Lenteren JC, Bolckmans K, Köhl J et al (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59CrossRefGoogle Scholar
  159. van Rijswick C (2015) World Floriculture Map 2015. Rabobank Industry Note #475. Coöperatieve Centrale Raiffeisen-Boerenleenbank B.A. pp 1–4. https://www.rabobank.com/en/images/World_Floriculture_Map_2015_vanRijswick_Jan2015.pdf
  160. VanDerMeij J, Warfield C (2011) Indexing for disease. Chapter 15. In: Nau J (ed) BallRedbook, vol 2. Ball Publishing, Chicago, pp 173–176Google Scholar
  161. Verbeek M et al (2004) Ophiovirus isolated from freesia with freesia leaf necrosis disease. 11th ISVDOP. Taichung, TaiwanGoogle Scholar
  162. Vierbergen G, Loomans AJ (2016) Thrips setosus (Thysanoptera: Thripidae), the Japanese flower thrips, in cultivation of hydrangea in the Netherlands. Entomologische Berichten 76(3):103–108Google Scholar
  163. Vierbergen G, Cean M, Szellér IH et al (2006) Spread of two thrips pests in Europe: Echinothrips americanus and Microcephalothrips abdominalis (Thysanoptera: Thripidae). Acta Phytopathol Entomol Hung 41:287–296.  https://doi.org/10.1556/APhyt.41.2006.3-4.11CrossRefGoogle Scholar
  164. Volpin H, Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to botrytis blight. Phytopathology 81:1390–1394CrossRefGoogle Scholar
  165. Von Broembsen SL, Deacon JW (1997) Calcium interference with zoospore biology and infectivity of Phytophthora parasitica in nutrient irrigation solutions. Phytopathology 87:522–528CrossRefGoogle Scholar
  166. Voogt W (1992) The effects of Si application on roses in rockwood, pp 17–18. In: Annual report 1992 Glasshouse crops research station, Naaldwijk, The NetherlandsGoogle Scholar
  167. Warfield CY (2012) Efficacy of cease, KleenGrow and standard fungicides for prevention of downy mildew, 2012. PDMR 6:OT029Google Scholar
  168. Warfield CY (2017) Impatiens downy mildew: guidelines for growers, v. 12. Ball Horticultural Co. https://www.ballseed.com/pdf/ImpatiensDownyMildewGrowerGuidelines.pdf
  169. Wegulo SN, Koike ST, Vilchez M et al (2004) First report of downy mildew caused by Plasmopara obducens on impatiens in California. Plant Dis 88(8):90CrossRefGoogle Scholar
  170. Weibel J, Tran TM, Bocsanczy AM et al (2016) A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts Vinca and Sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy (Osteospermum ecklonis). Plant Health Prog 17:114–121CrossRefGoogle Scholar
  171. Wick RL, Dicklow MB (2002) Epipremnum, a new host for Phytophthora capsici. Plant Dis 86(9):1050PubMedCrossRefGoogle Scholar
  172. Winter S, Hamacher A, Engelmann J, Lesemann D-E (2006) Angelonia flower mottle, a new disease of Angelonia angustifolia caused by a hitherto unknown carmovirus. Plant Pathol 55(6):820–820CrossRefGoogle Scholar
  173. Zheng Y et al (2004) Potted gerbera production in a subirrigation system using low-concentration nutrient solutions. HortScience 39(6):1283–1286CrossRefGoogle Scholar
  174. Zheng Y et al (2010) Optimum feeding nutrient solution concentration for greenhouse potted miniature rose production in a recirculating subirrigation system. HortScience 45(9):1378–1383CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant ScienceCornell UniversityRiverheadUSA
  2. 2.Vineland Research and Innovation CentreVineland StationCanada

Personalised recommendations