Advertisement

Sweet Peppers

  • Gerben J. MesselinkEmail author
  • Roselyne Labbé
  • Geneviève Marchand
  • Luciana Tavella
Chapter
  • 49 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Sweet pepper is an important greenhouse vegetable crop and highly attractive to multiple pest and pathogen species. The main pests and diseases detrimental to pepper crops in various parts of the globe are reported here, along with the most effective or sustainable control strategies currently applied to manage them. Biological control of the main pest species, such as thrips, whiteflies and spider mites, is in general very successful with generalist predators, because of their ability to establish populations prior to pest invasions by using the plant-provided pollen as an alternative food source. However, other pest species, such as aphids, stink bugs and the pepper weevil, are still hard to control without pesticides and require new tools for management that do not disrupt the robust system of biological control. Most diseases can be controlled well by managing the climate, soil solarization, growing out of soil or by applying bacterial or fungal antagonists. All these tools together offer the opportunity to manage most pest and diseases with a minimal use of pesticides.

Keywords

Biological control Aphids Thrips Mites Caterpillars Whiteflies Stink bugs Pepper weevil Internal fruit rot Powdery mildew 

References

  1. Acheampong S, Gillespie DR, Quiring DJM (2012) Survey of parasitoids and hyperparasitoids (Hymenoptera) of the green peach aphid, Myzus persicae and the foxglove aphid, Aulacorthum solani (Hemiptera: Aphididae) in British Columbia. J Entomol Soc Br Columbia 109:12–22Google Scholar
  2. Al-mazra’awi MS, Shipp L, Broadbent B, Kevan P (2006) Biological control of Lygus lineolaris (Hemiptera : Miridae) and Frankliniella occidentalis (Thysanoptera : Thripidae) by Bombus impatiens (Hymenoptera : Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37(1):89–97.  https://doi.org/10.1016/j.biocontrol.2005.11.014CrossRefGoogle Scholar
  3. Auger P, Migeon A, Ueckermann EA, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): review and new data. Acarologia 53(4):383–415CrossRefGoogle Scholar
  4. Barbary A, Djian-Caporalino C, Palloix A, Castagnone-Sereno P (2015) Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field. Pest Manag Sci 71(12):1591–1598.  https://doi.org/10.1002/ps.4091CrossRefPubMedGoogle Scholar
  5. Bartlett BR, Clausen CP (1978) Introduced parasites and predators of arthropod pests and weeds: a world review. Agriculture handbook (United States. Dept. of Agriculture); no. 480, vi. Agricultural Research Service, U.S. Dept. of Agriculture; no 480, Washington, DCGoogle Scholar
  6. Bloemhard CMJ, van der Wielen M, Messelink GJ (2014) Seasonal abundance of aphid hyperparasitoids in organic greenhouse crops in the Netherlands. IOBC-WPRS Bull 102:15–19Google Scholar
  7. Blümel S (2004) Biological control of aphids on vegetable crops. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 297–312Google Scholar
  8. Bosco D, Caciagli P (1998) Bionomics and ecology of Bemisia tabaci (Sternorrhyncha : Aleyrodidae) in Italy. Eur J Entomol 95(4):519–527Google Scholar
  9. Bosco L, Tavella L (2013) Distribution and abundance of species of the genus Orius in horticultural ecosystems of northwestern Italy. Bull Insectol 66(2):297–307Google Scholar
  10. Bosco L, Giacometto E, Tavella L (2008) Colonization and predation of thrips (Thysanoptera : Thripidae) by Orius spp. (Heteroptera : Anthocoridae) in sweet pepper greenhouses in Northwest Italy. Biol Control 44(3):331–340.  https://doi.org/10.1016/j.biocontrol.2007.10.027CrossRefGoogle Scholar
  11. Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40.  https://doi.org/10.1016/j.cropro.2012.03.019CrossRefGoogle Scholar
  12. CABI (2017) Datasheet: Chrysodeixis chalcites (golden twin-spot moth). Accessed 1 Nov 2017. Available at:. https://www.cabi.org/isc/datasheet/13243. Accessed Nov 2017
  13. Calvo FJ, Bolckmans K, Belda JE (2009) Development of a biological control-based integrated pest management method for Bemisia tabaci for protected sweet pepper crops. Entomol Exp Appl 133(1):9–18.  https://doi.org/10.1111/j.1570-7458.2009.00896.xCrossRefGoogle Scholar
  14. Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE (2015) Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65(4):419–433.  https://doi.org/10.1007/s10493-014-9873-0CrossRefPubMedGoogle Scholar
  15. Cerkauskas RF, Ferguson G, Banik M (2011) Powdery mildew (Leveillula taurica) on greenhouse and field peppers in Ontario – host range, cultivar response and disease management strategies. Can J Plant Pathol Rev Can Phytopathol 33(4):485–498.  https://doi.org/10.1080/07060661.2011.619828CrossRefGoogle Scholar
  16. Costello R, Gillespie D (1992) The pepper weevil, Anthonomus eugenii Cano as a greenhouse pest in Canada. IOBC/WPRS Bull 27:31–35Google Scholar
  17. De Souza VL, Café-Filho AC (2003) Resistance to Leveillula taurica in the genus Capsicum. Plant Pathol 52(5):613–619.  https://doi.org/10.1046/j.1365-3059.2003.00920.xCrossRefGoogle Scholar
  18. Dickey AM, Kumar V, Hoddle MS, Funderburk JE, Morgan JK, Jara-Cavieres A, Shatters RGJ, Osborne LS, McKenzie CL (2015) The Scirtothrips dorsalis species complex: endemism and invasion in a global pest. PLoS One 10(4):22.  https://doi.org/10.1371/journal.pone.0123747CrossRefGoogle Scholar
  19. Dobson RC, Rogers M, Moore JLC, Bessin RT (2016) Exclusion of the brown marmorated stink bug from organically grown peppers using barrier screens. HortTechnology 26(2):191–198CrossRefGoogle Scholar
  20. Duarte MVA, Venzon M, Bittencourt MCD, Rodriguez-Cruz FA, Pallini A, Janssen A (2015) Alternative food promotes broad mite control on chilli pepper plants. BioControl 60(6):817–825.  https://doi.org/10.1007/s10526-015-9688-xCrossRefGoogle Scholar
  21. Ehret DL, Alsanius B, Wohanka W, Menzies JG, Utkhede R (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21(4):323–339CrossRefGoogle Scholar
  22. Elad Y, Stewart A (2007) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht, pp 223–241.  https://doi.org/10.1007/978-1-4020-2626-3_13CrossRefGoogle Scholar
  23. Erlandson M, Newhouse S, Moore K, Janmaat A, Myers J, Theilmann D (2007) Characterization of baculovirus isolates from Trichoplusia ni populations from vegetable greenhouses. Biol Control 41(2):256–263.  https://doi.org/10.1016/j.biocontrol.2007.01.011CrossRefGoogle Scholar
  24. EUROSTAT (2017) Crop statistics (from 2000 onwards)Google Scholar
  25. FAOSTAT (2017) Food and agriculture data. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  26. Ferrero M, Gigot C, Tixier MS, Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135(3):237–244CrossRefGoogle Scholar
  27. FRAC (2017) Fungicide Resistance Action Committee. FRAC code list 2017: fungicides sorted by mode of action (including FRAC Code numbering). Accessed Nov 2017Google Scholar
  28. Ghasemzadeh S, Leman A, Messelink GJ (2017) Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Exp Appl Acarol.  https://doi.org/10.1007/s10493-017-0191-1CrossRefGoogle Scholar
  29. Gillespie DR, Quiring DJM, Foottit RG, Foster SP, Acheampong S (2009) Implications of phenotypic variation of Myzus persicae (Hemiptera: Aphididae) for biological control on greenhouse pepper plants. J Appl Entomol 133(7):505–511.  https://doi.org/10.1111/j.1439-0418.2008.01365.xCrossRefGoogle Scholar
  30. Giné A, Carrasquilla M, Martinez-Alonso M, Gaju N, Sorribas FJ (2016) Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Front Plant Sci 7:15.  https://doi.org/10.3389/fpls.2016.00164CrossRefGoogle Scholar
  31. Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Z, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89(2):295–311.  https://doi.org/10.1007/s10340-016-0751-xCrossRefGoogle Scholar
  32. Guerrero MM, Martínez MA, Martínez MC, Barceló N, Lacasa A, Ros C, Guirao P, Bello A, López JA (2005) Biofumigation plus solarization efficacy for soil disinfestation in sweet pepper greenhouses in the southeast of Spain. ActaHortic 698:293–298.  https://doi.org/10.17660/ActaHortic.2005.698.39CrossRefGoogle Scholar
  33. Guerrero A, Malo EA, Coll J, Quero C (2014) Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae). J Pest Sci 87(2):231–247.  https://doi.org/10.1007/s10340-013-0533-7CrossRefGoogle Scholar
  34. Gullino ML, Garibaldi A (2012) Soil solarization under greenhouse conditions. In: Gamliel A, Katan J (eds) Soil solarization: theory and practice. APS Press, St Paul, pp 187–191.  https://doi.org/10.1094/9780890544198.027CrossRefGoogle Scholar
  35. Hewitt LC, Shipp L, Buitenhuis R, Scott-Dupree C (2015) Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Exp Appl Acarol 65(4):435–450.  https://doi.org/10.1007/s10493-014-9861-4CrossRefPubMedGoogle Scholar
  36. Jacobson R (2011) Hyperparasitoids: a threat to IPM of aphids on sweet pepper? IOBC/WPRS 68:75–78Google Scholar
  37. Janmaat AF, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond Ser B Biol Sci 270(1530):2263–2270.  https://doi.org/10.1098/rspb.2003.2497CrossRefGoogle Scholar
  38. Kapongo JP, Shipp L, Kevan P, Sutton JC (2008) Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol Control 46(3):508–514.  https://doi.org/10.1016/j.biocontrol.2008.05.008CrossRefGoogle Scholar
  39. Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59(4):475–483.  https://doi.org/10.1002/ps.689CrossRefPubMedGoogle Scholar
  40. Labbé R, Hilker R, Gagnier D, McCreary C, Gibson G, Fernández-Triana J, Mason P, Gariepy T (2017) Natural enemies of the pepper weevil, Anthonomus eugenii (Coleoptera: Curculionidae). IOBC-WPRS Bull 124:222–223Google Scholar
  41. Labbé RM, Gagnier D, Shipp L (2019) Comparison of Transeius montdorensis (Acari: Phytoseiidae) to other phytoseiid mites for the short-season suppression of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol 48(2):335–342.  https://doi.org/10.1093/ee/nvz017CrossRefGoogle Scholar
  42. Li RG, Baysal-Gurel F, Abdo Z, Miller SA, Ling KS (2015) Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virol J 12:11.  https://doi.org/10.1186/s12985-014-0237-5CrossRefGoogle Scholar
  43. Markkula M, Tiittanen K (1976) “Pest-in-first” and “natural infestation” methods in the control of Tetranychus urticae Koch with Phytoseiulus persimilis Athias-Henriot on glasshouse cucumbers. Ann Entomol Fenn 15(1):81–85Google Scholar
  44. Mathews CR, Blaauw B, Dively G, Kotcon J, Moore J, Ogburn E, Pfeiffer DG, Trope T, Walgenbach JF, Welty C, Zinati G, Nielsen AL (2017) Evaluating a polyculture trap crop for organic management of Halyomorpha halys and native stink bugs in peppers. J Pest Sci 90(4):1245–1255.  https://doi.org/10.1007/s10340-017-0838-zCrossRefGoogle Scholar
  45. Messelink GJ (2002) Biological control of caterpillars with Cotesia marginiventris (Hymenoptera: Braconidae) in sweet pepper and tomato. IOBC/WPRS Bull 25(1):181–184Google Scholar
  46. Messelink GJ, Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol Control 79:1–7.  https://doi.org/10.1016/j.biocontrol.2014.07.009CrossRefGoogle Scholar
  47. Messelink GJ, van Steenpaal S (2002) Wantsen in komkommer, paprika en aubergine. Praktijkonderzoek Plant & Omgeving B.V. http://edepot.wur.nl/302006
  48. Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011a) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Control 57(3):246–252.  https://doi.org/10.1016/j.biocontrol.2011.02.013CrossRefGoogle Scholar
  49. Messelink GJ, Bloemhard CMJ, Kok L, Janssen A (2011b) Generalist predatory bugs control aphids in sweet pepper. IOBC/WPRS Bull 68:115–118Google Scholar
  50. Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control – current and future tactics. InTech, Rijeka, pp 191–214.  https://doi.org/10.5772/30835Google Scholar
  51. Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A (2013) Biological control of aphids in the presence of thrips and their enemies. BioControl 58:45–55.  https://doi.org/10.1007/s10526-012-9462-2CrossRefGoogle Scholar
  52. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59(4):377–393.  https://doi.org/10.1007/s10526-014-9579-6CrossRefGoogle Scholar
  53. Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139(5):333–341.  https://doi.org/10.1111/jen.12170CrossRefGoogle Scholar
  54. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25(4):271–291CrossRefGoogle Scholar
  55. O’Neill T, Mayne S (2015) Sweet pepper: aspects of the biology and control of fusarium fruit rot. Commun Agric Appl Biol Sci 80(3):569–573PubMedGoogle Scholar
  56. Pansa MG, Tavella L (2009) Alfalfa management affects infestations of Lygus rugulipennis (Heteroptera: Miridae) on strawberries in northwestern Italy. Crop Prot 28(2):190–195.  https://doi.org/10.1016/j.cropro.2008.10.006CrossRefGoogle Scholar
  57. Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141(2):219–236.  https://doi.org/10.1016/j.virusres.2009.01.009CrossRefPubMedGoogle Scholar
  58. Peña JE, Osborne L (1996) Biological control of Polyphagotarsonemus latus (Acarina: Tarsonemidae) in greenhouses and field trials using introductions of predacious mites (Acarina: Phytoseiidae). Entomophaga 41(2):279–285.  https://doi.org/10.1007/bf02764253CrossRefGoogle Scholar
  59. Pilkington LJ, Messelink G, van Lenteren JC, Le Mottee K (2010) “Protected biological control” – biological pest management in the greenhouse industry. Biol Control 52(3):216–220.  https://doi.org/10.1016/j.biocontrol.2009.05.022CrossRefGoogle Scholar
  60. Postma J, Willemsen-de Klein M, van Elsas JD (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90(2):125–133.  https://doi.org/10.1094/phyto.2000.90.2.125CrossRefPubMedGoogle Scholar
  61. Rama F, Reggiori F, Albertini A (2011) Control of Spodoptera littoralis (Bsdv.) by biodegradable, low dosage, slow-release pheromone dispensers. IOBC/WPRS Bull 72:59–66Google Scholar
  62. Ramakers PMJ (1980) Biological control of Thrips tabaci (Thysanoptera: Thripidae) with Amblyseius spp. (Acari: Phytoseiidae). IOBC/WPRS 3(3):203–208Google Scholar
  63. Raworth DA, Gillespie DR, Roy M, Thistlewood HMA (2002) Tetranychus urticae Koch, twospotted spider mite (Acari: Tetranychidae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CAB International, Wallingford, pp 259–265Google Scholar
  64. Rocca M, Messelink GJ (2017) Combining lacewings and parasitoids for biological control of foxglove aphids in sweet pepper. J Appl Entomol 141(5):402–410.  https://doi.org/10.1111/jen.12355CrossRefGoogle Scholar
  65. Rodriguez-Leyva E, Stansly PA, Schuster DJ, Bravo-Mosqueda E (2007) Diversity and distribution of parasitoids of Anthonomus eugenii (Coleoptera: Curculionidae) from Mexico and prospects for biological control. Fla Entomol 90(4):693–702.  https://doi.org/10.1653/0015-4040(2007)90[693:dadopo]2.0.co;2CrossRefGoogle Scholar
  66. Schroers HJ (2001) A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud Mycol 46:1–214Google Scholar
  67. Schuster DJ (2007) Suppression of Anthonomus eugenii (Coleoptera: Curculionidae) pepper fruit infestation with releases of Catolaccus hunteri (Hymenoptera : Pteromalidae). Biocontrol Sci Tech 17(4):345–351.  https://doi.org/10.1080/09583150701211970CrossRefGoogle Scholar
  68. Speranza S, Colonnelli E, Garonna AP, Laudonia S (2014) First record of Anthonomus eugenii (Coleoptera: Curculionidae) in Italy. Fla Entomol 97(2):844–845.  https://doi.org/10.1653/024.097.0275CrossRefGoogle Scholar
  69. Statistics-Canada (2017) Production and value of greenhouse vegetables. Statistics Canada, OttawaGoogle Scholar
  70. Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behavior. Annu Rev Entomol 44:291–315CrossRefGoogle Scholar
  71. Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer KH, Ruud AK, Mortensen LM, Gadoury DM, Seem RC, Gislerod HR (2014) Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant Dis 98(10):1349–1357.  https://doi.org/10.1094/pdis-03-13-0222-reCrossRefPubMedGoogle Scholar
  72. Tommasini MG (2004) Collection of Orius species in Italy. Bull Insectol 57(2):65–72Google Scholar
  73. Tranier MS, Pognant-Gros J, Quiroz RD, Gonzalez CNA, Mateille T, Roussos S (2014) Commercial biological control agents targeted against plant-parasitic root-knot nematodes. Braz Arch Biol Technol 57(6):831–841.  https://doi.org/10.1590/s1516-8913201402540CrossRefGoogle Scholar
  74. Turina M, Tavella L, Ciuffo M (2012) Tospoviruses in the Mediterranean area. Adv Virus Res 84:404–337.  https://doi.org/10.1016/B978-0-12-394314-9.00012-9CrossRefGoogle Scholar
  75. USDA (2017) U.S. regulated plant pest table. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/rppl/rppl-table. Accessed 22 Dec 2017
  76. van der Gaag DJ, Loomans AM (2013) Pest risk analysis for Anthonomus eugenii. Netherlands Food and Consumer Product Safety Authority. https://english.nvwa.nl/documents/risicobeoordeling/plantenziekten/archief/2016m/pest-risk-analysis-anthonomus-eugenii
  77. van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52(1):29–34.  https://doi.org/10.1007/s10493-010-9343-2CrossRefPubMedPubMedCentralGoogle Scholar
  78. Weintraub PG, Kleitman S, Mori R, Shapira N, Palevsky E (2003) Control of the broad mite (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L.) with the predatory mite, Neoseiulus cucumeris (Oudemans). Biol Control 27(3):300–309.  https://doi.org/10.1016/s1049-9644(03)00069-0CrossRefGoogle Scholar
  79. Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PRJ, Hein I (2014) Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front Plant Sci 5:13.  https://doi.org/10.3389/fpls.2014.00655CrossRefGoogle Scholar
  80. Yang YL, Cao TS, Yang JA, Howard RJ, Kharbanda PD, Strelkov SE (2010) Histopathology of internal fruit rot of sweet pepper caused by Fusarium lactis. Can J Plant Pathol Rev Can Phytopathol 32(1):86–97.  https://doi.org/10.1080/07060660903503681CrossRefGoogle Scholar
  81. Yücel S, Ozarslandan A, Colak A, Ay T, Can C (2007) Effect of solarization and fumigant applications on soilborne pathogens and root-knot nematodes in greenhouse-grown tomato in Turkey. Phytoparasitica 35(5):450–456CrossRefGoogle Scholar
  82. Zheng Z, Nonomura T, Boka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai YL (2013) Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103(6):623–632.  https://doi.org/10.1094/phyto-08-12-0198-rCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gerben J. Messelink
    • 1
    Email author
  • Roselyne Labbé
    • 2
  • Geneviève Marchand
    • 2
  • Luciana Tavella
    • 3
  1. 1.Business Unit Greenhouse HorticultureWageningen University & ResearchBleiswijkThe Netherlands
  2. 2.Agriculture and Agri-Food CanadaHarrow Research and Development CentreHarrowCanada
  3. 3.Dipartimento di Scienze Agrarie, Forestali e AlimentariUniversity of TurinTurinItaly

Personalised recommendations