Advertisement

Biological Control Agents for Control of Pests in Greenhouses

  • Joop C. van LenterenEmail author
  • Oscar Alomar
  • Willem J. Ravensberg
  • Alberto Urbaneja
Chapter
  • 48 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

First we describe the different types of biocontrol used in greenhouses and present examples of each type. Next we summarize the history of greenhouse biocontrol, which started in 1926, showed a problematic period when synthetic chemical pesticides became available after 1945, and flourished again since the 1970s. After 1970, the number of natural enemies becoming available for commercial augmentative biocontrol in greenhouses grew very fast, as well as the industry producting these control agents. Biocontrol of the most important clusters of greenhouse pests is summarized, as well as the taxonomic groups of natural enemies that play a main role in greenhouses. More than 90% of natural enemy species used in greenhouses belong to the Arthropoda and less than 10%, many belonging to the Nematoda, are non-arthropods. This is followed by sections on finding and evaluation of potential biocontrol agents, and on mass production, storage, release and quality control of natural enemies. Since the 1970s, production of biocontrol agents has moved from a cottage industry to professional research and production facilities. Many efficient agents have been identified, quality control protocols, mass-production, shipment and release methods matured, and adequate guidance for farmers has been developed. Most natural enemy species (75%) are produced in low or medium numbers per week (hundreds to a hundred thousand), and are applied in situations where only low numbers are needed, such as private gardens, hospitals, banks, and shopping malls. The other 25% of the species are produced in numbers of 100,000 to up to millions per week and regularly released in many of the greenhouse crops. Microbial pesticides are predominantly used as corrective treatments in greenhouse crops where natural enemies are providing insufficient control. Europe is still the largest commercial market for arthropod greenhouse biocontrol agents, and North America is the largest market for microbial control agents. We then continue with a discussion on the pros and cons of use of polyphagous predators, and the use of semiochemicals. Finally, we summarize factors that indicate a positive future for greenhouse biocontrol, as well as developments frustrating its implementation.

Keywords

Natural biocontrol Conservation biocontrol Classical biocontrol Augmentative biocontrol Inundative biocontrol Seasonal inoculative control Polyphagous predators Semiochemicals Mass production 

Notes

Acknowledgements

Dr. A.J.M. Loomans (The Netherlands food and consumer product safety authority (NVWA)) and Dr. M. Knapp (Koppert Biological Systems, The Netherlands) are thanked for helping us updating the list of recently marketed exotic and native biological control agents in Europe.

References

  1. Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–574CrossRefGoogle Scholar
  2. Albajes R, Alomar O (1999) Current and potential use of polyphagous predators. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Dordrecht, pp 265–275Google Scholar
  3. Albajes R, Alomar O (2008) Facultative predators. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 1400–1405Google Scholar
  4. Albajes R, Casadevall M, Bordas E, Gabarra R, Alomar O (1980) La mosca blanca de los invernaderos, Trialeurodes vaporariorum, en El Maresme. II. Utilización de Encarsia tricolor [Hym.: Aphelinidae] en un invernadero de tomate temprano. Anales INIA/Ser Agric 13:191–203Google Scholar
  5. Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) (1999) Integrated pest and disease management in greenhouse crops. Kluwer Publishers, Dordrecht. 545 ppGoogle Scholar
  6. Albajes R, Castañé C, Gabarra R, Alomar O (2006) Risks of plant damage caused by natural enemies introduced for arthropod biological control. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publishing, Oxon, pp 132–144CrossRefGoogle Scholar
  7. Alomar O, Albajes R (1996) Greenhouse whitefly (Homoptera: Aleyrodidae) predation and tomato fruit injury by the zoophytophagous predator Dicyphus tamaninii (Heteroptera: Miridae). In: Alomar O, Wiedenmann RN (eds) Zoophytophagous Heteroptera: implications for life history and integrated pest management. Entomological Society of America, Lanham, pp 155–177Google Scholar
  8. Alvarado P, Balta O, Alomar O (1997) Efficiency of four heteroptera as predators of Aphis gossypii and Macrosiphum euphorbiae (Hom.: Aphididae). Entomophaga 42:215–226CrossRefGoogle Scholar
  9. Arnó J, Castañé C, Alomar O, Riudavets J, Agustí N, Gabarra R, Albajes R (2018) Forty years of biological control in Mediterranean tomato greenhouses: the story of success. Isr J Entomol 48(2):209–226Google Scholar
  10. Baker TC (2009) Use of pheromones in IPM. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management. Cambridge University Press, Cambridge UK, pp 273–285Google Scholar
  11. Beitia F, Asís JD, Pedro LD, Goula M, Tormos J (2016) Importance of feeding behaviour on life cycle in the zoophytophagous bug Dicyphus geniculatus. Bull Insectology 69(2):173–180Google Scholar
  12. Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CAB Int, Wallingford, 299 pp.Google Scholar
  13. Bolckmans KJF, Houten YM, Van Baal AE, Castagnoli M, Nannelli R, Simoni S (2005) Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop. Patent registered as PCT/NL2005/000899, Priority date: December 29, 2005Google Scholar
  14. Bouagga S, Urbaneja A, Rambla JL, Granell A, Pérez-Hedo M (2018a) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64CrossRefGoogle Scholar
  15. Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, Jaques JA, Pérez-Hedo M (2018b) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74(6):1286–1296PubMedCrossRefGoogle Scholar
  16. Brownbridge M (2017) Biological control in greenhouse IPM systems: where we’ve been, where we are, and where we need to go? IOBC-WPRS Bull, Bull OILB-SROP 124:1–11Google Scholar
  17. Bueno VHP, van Lenteren JC, Lins JC Jr, Calixto AM, Montes FC, Silva DB, Santiago LD, Pérez LM (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian hemipteran predatory bugs. J Appl Entomol 137:29–34CrossRefGoogle Scholar
  18. Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56:185–192CrossRefGoogle Scholar
  19. Calvo FJ, Bolckmans K, Belda JE (2012a) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Tech 22:1398–1416CrossRefGoogle Scholar
  20. Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012b) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119CrossRefGoogle Scholar
  21. Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE (2015) Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65:419–433CrossRefGoogle Scholar
  22. Calvo FJ, Torres-Ruiz A, Velázquez-González JC, Rodríguez-Leyva E, Lomeli-Flores JR (2016) Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. BioControl 61:415–424CrossRefGoogle Scholar
  23. Castañé C, Alomar O, Goula M, Gabarra R (2004) Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biol Control 30:591–597CrossRefGoogle Scholar
  24. Castañé C, Arnó J, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29CrossRefGoogle Scholar
  25. Cavalloro R, Pelerents C (1989) Integrated pest management in protected vegetable crops. Balkema, Rotterdam. 416 ppGoogle Scholar
  26. Chambers R, Long S, Helyer NL (1993) Effectiveness of Orius laevigatus (Hem, Anthocoridae) for the control of Frankliniella occidentalis on cucumber and pepper in the UK. Biocontrol Sci Tech 3:295–307CrossRefGoogle Scholar
  27. Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218CrossRefGoogle Scholar
  28. Cocuzza GE, De Clercq P, Van de Veire M, De Cock A, Degheele D, Vacante V (1997) Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomol Exp Appl 82:101–104CrossRefGoogle Scholar
  29. Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297PubMedCrossRefPubMedCentralGoogle Scholar
  30. DeClerq P (2002) Dark clouds and their silver linings: exotic generalist predators in augmentative biological control. Neotrop Entomol 31:169–176Google Scholar
  31. Dicke M (2016) Plant phenotypic plasticity in the phytobiome: a volatile issue. Curr Opin Plant Biol 32:17–23CrossRefGoogle Scholar
  32. Dorchin N (2008) Gall midges (Diptera: Cecidomyiidae). In: Capinera JL (ed) Enclyclopedia of entomology, vol 2. Springer, Dordrecht, pp 1576–1580Google Scholar
  33. Dunham WC (2015) Evolution and future of biocontrol. Paper presented at the 10th Annual Biocontrol Industry Meeting (ABIM), Basel, Switzerland, October 20th, 2015. http://www.abim.ch/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1489234639&hash=9a70d39f93f7e559c74c63844ae047a9aa3c37ea&file=fileadmin/abim/documents/presentations2015/Keynote_Dunham_ABIM_2015.pdf. Cited 10 March 2017
  34. Durán-Prieto J, Castañe C, Calvet C, Camprubi A, Battaglia D, Trotta V, Fanti P (2017) Tomato belowground – aboveground interactions: Rhizophagus irregularis affects foraging behavior and life history traits of the predator Macrolophus pygmaeus (Hemiptera: Miridae). Arthropod Plant Interact 11:15–22CrossRefGoogle Scholar
  35. EC (2009) Sustainable use directive. European Parliament and of the Council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86Google Scholar
  36. Fatouros NE, Dicke M, Mumm R, Meiners T, Hilkers M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689CrossRefGoogle Scholar
  37. Fauvel G, Malausa JC, Kaspar B (1987) Etude en laboratoire des principales caracteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 35:529–543CrossRefGoogle Scholar
  38. Gabarra R, Castañé C, Bordas E, Albajes R (1988) Dicyphus tamaninii as a beneficial insect and pest in tomato crops in Catalonia, Spain. Entomophaga 33:219–228CrossRefGoogle Scholar
  39. Gillespie DR, McGregor R, Sanchez JA, Quiring SL, Van Laerhoven DMJ, Roitberg BD (2007) An endemic omnivorous predator for control of greenhouse pests. In: Vincent C, Goettel M, Lazarovits G et al (eds) Biological control: a global perspective. CABI Publishing, UK, pp 128–135CrossRefGoogle Scholar
  40. Godfray HCJ (1994) Parasitoids: behavioural and evolutionary ecology. Princeton University Press, Princeton, New Jersey, USA. 473 ppGoogle Scholar
  41. Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255.  https://doi.org/10.3389/fpls.2015.01255CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hagen KS (1962) Biology and ecology of predacious Coccinellidae. Annu Rev Entomol 7:289–326CrossRefGoogle Scholar
  43. Hamdan AJS, Abu-Awad IT (2008) Biological aspects of the predatory bug Orius laevigatus (Fiber) [Hemiptera: Anthocoridae] when fed on the tobacco whitefly Bemisia tabaci (Gennadius) [Homoptera: Aleyrodidae] spread on tomato and eggplant. Dirasat: Agric Sci 35:81–91Google Scholar
  44. Hussey NW, Bravenboer L (1971) Control of pests in glasshouse culture by the introduction of natural enemies. In: Huffaker CB (ed) Biological control. Plenum, New York, USA, pp 195–216Google Scholar
  45. Ingegno BL, Candian V, Psomadelis I, Bodino N, Tavella L (2017) The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. Bull Entomol Res 107(3):340–348CrossRefGoogle Scholar
  46. Jacas JA, Urbaneja A, Viñuela E (2006) History and future of introduction of exotic arthropod biological control agents in Spain: a dilemma? BioControl 51:1–30CrossRefGoogle Scholar
  47. James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495.  https://doi.org/10.1007/s10886-005-2020-yCrossRefPubMedGoogle Scholar
  48. Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BC, Villarroel CA, Ataide LM, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115:1015–1051PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lambion J, Ingegno BL, Tavella L, Alomar O, Perdikis D (2016) Companion plants for predatory bugs. Fact sheet no 4. Cost action FA1105 – BioGreenhouseGoogle Scholar
  50. Lamichhane JR, Bischoff-Schaefer M, Blumel S, Dachbrodt-Saaydeh S, Dreux L, Jansen JP, Kiss J, Köhl J, Kudsk P, Malausa T, Nicot P, Ricci P, Thibierge J, Villeneuve F (2017) Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops. Pest Manag Sci 73:14–21PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lanzoni A, Martelli R, Pezzi F (2017) Mechanical release of Phytoseiulus persimilis and Amblyseius swirskii on protected crops. Bull Insectology 70(2):245–250Google Scholar
  52. Lattin JD (1999) Bionomics of the Anthocoridae. Annu Rev Entomol 44:207–231PubMedCrossRefGoogle Scholar
  53. Lommen STE, de Jong PW, Pannebakker BA (2018) Time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimise arthropods for augmentative pest control. Entomologia Experimentalis et Applicata 162:108–123Google Scholar
  54. Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502CrossRefGoogle Scholar
  55. Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124PubMedCrossRefGoogle Scholar
  56. McEwen P, New T, Whittington A (2001) Lacewings in the crop environment. Cambridge University Press, Cambridge, UK. 546 ppGoogle Scholar
  57. McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321CrossRefGoogle Scholar
  58. Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51:753–768CrossRefGoogle Scholar
  59. Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379CrossRefGoogle Scholar
  60. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393CrossRefGoogle Scholar
  61. Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139:333–341CrossRefGoogle Scholar
  62. Moerkens R, Berckmoes E, Van Damme V, Ortega-Parra N, Hanssen I, Wuytack M, Wittemans L, Casteels H, Tirry L, De Clercq P, De Vis R (2016) High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus? Pest Manag Sci 72:1350–1358PubMedCrossRefPubMedCentralGoogle Scholar
  63. Nomikou N, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acar 25:271–291CrossRefGoogle Scholar
  64. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68PubMedCrossRefPubMedCentralGoogle Scholar
  65. Obrycki JJ, Kring TJ (1998) Predaceous Coccinellidae in biological control. Annu Rev Entomol 43(1):295–321PubMedCrossRefGoogle Scholar
  66. Pappas M, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS One 10(5):e0127251PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pappas ML, Steppuhn A, Broufas GD (2016) The role of phytophagy by predators in shaping plant interactions with their pests. Commun Integr Biol 9(2):e1145320PubMedPubMedCentralCrossRefGoogle Scholar
  68. Park H-H, Shipp L, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103(3):563–569CrossRefGoogle Scholar
  69. Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21CrossRefGoogle Scholar
  70. Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Dordrecht, pp 121–138CrossRefGoogle Scholar
  71. Pérez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biol Control 86:46–51CrossRefGoogle Scholar
  72. Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018) Biological activity and specificity of Miridae-induced plant volatiles. BioControl 63:203–213.  https://doi.org/10.1007/s10526-017-9854-4CrossRefGoogle Scholar
  73. Peterson JA, Ode PJ, Oliveira-Hofman C, Harwood JD (2016) Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front Plant Sci 7:1794.  https://doi.org/10.3389/fpls.2016.01794CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pineda SM, Figueroa M, José I et al. (2016) Life history, diagnosis, and biological aspects of Engytatus varians (Hemiptera: Miridae), a predator of Bactericera cockerelli (Hemiptera: Triozidae). Biocontrol Sci Tech 26(8):1073–1086CrossRefGoogle Scholar
  75. Poinar GO, Grewal PS (2012) History of entomopathogenic nematology. J Nematol 44:153–161PubMedPubMedCentralGoogle Scholar
  76. Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, Dordrecht, Netherlands. 383 ppCrossRefGoogle Scholar
  77. Research and Markets (2016a) Biopesticides global strategic business report. http://www.researchandmarkets.com/publication/mlv3aqe/347972. Cited 10 March 2017
  78. Research and Markets (2016b) Global pesticides market segmented by type, application area and geography. Trends and forecasts (2015–2020). Sustainability, regulation & competition. http://www.researchandmarkets.com/research/4hd338/global_pesticides. Cited 10 March 2017
  79. Sanchez J, Lacasa A (2002) Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Bull Entomol Res 92:77–88PubMedGoogle Scholar
  80. Secretariat of the Convention on Biological Diversity (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity: text and annex, Convention on Biological Diversity. United Nations, Montreal, CanadaGoogle Scholar
  81. Silva DB, Bueno VHP, Calvo FJ, van Lenteren JC (2017) Do nymphs and adults of three Neotropical zoophytophagous mirids damage leaves and fruits of tomato? Bull Entomol Res 107(2):200–207PubMedCrossRefPubMedCentralGoogle Scholar
  82. Speyer ER (1927) An important parasite of the greenhouse white-fly (Trialeurodes vaporariorum Westwood). Bull Entomol Res 17:301–308CrossRefGoogle Scholar
  83. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594CrossRefGoogle Scholar
  84. Tommasini MG (2004) Collection of Orius species in Italy. Bull Insectology 57:65–72Google Scholar
  85. Tommasini MG, Nicoli G (1996) Evaluation of Orius spp. as biological control agents of thrips pests. Further experiments on the existence of diapause in Orius laevigatus. OILB/SORP Bull 19:183–186Google Scholar
  86. Tommasini MG, van Lenteren JC, Burgio G (2004) Biological traits and predation capacity of four Orius species on two prey species. Bull Insectology 57:79–94Google Scholar
  87. van der Blom J (2017) Control Biológico en cultivos hortícolas en Almería: balance después de 10 años. Bol SEEA 2:34–38Google Scholar
  88. van der Ent S, Knapp M, Klapwijk J, Moerman E, van Schelt J, de Weert S, Dik A, Schulthess F (2017) Knowing and recognizing: the biology of pests, diseases and their natural enemies. Koppert Biological Systems, Berken en Rodenrijs. 443 pp.Google Scholar
  89. van Lenteren JC (2000) A greenhouse without pesticides: fact of fantasy? Crop Prot 19:375–384.  https://doi.org/10.1016/S0261-2194(00)00038-7CrossRefGoogle Scholar
  90. van Lenteren JC (ed) (2003) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK. 327 ppGoogle Scholar
  91. van Lenteren JC (2010) Ecology: cool science, but does it help? Wageningen University, Wageningen. 44 pp. ISBN 978-90-8585-580-4Google Scholar
  92. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20.  https://doi.org/10.1007/s10526-011-9395-1CrossRefGoogle Scholar
  93. van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269.  https://doi.org/10.1146/annurev.en.33.010188.001323CrossRefGoogle Scholar
  94. van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634. + supplemental material.  https://doi.org/10.1146/annurev.ento.51.110104.151129CrossRefPubMedGoogle Scholar
  95. van Lenteren JC, Hemerik L, Lins JC, Bueno VHP (2016) Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato. Insects 7(3):34.  https://doi.org/10.3390/insects7030034CrossRefPubMedCentralPubMedGoogle Scholar
  96. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg W, Urbaneja A (2018a) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl.  https://doi.org/10.1007/s10526-017-9801-4CrossRefGoogle Scholar
  97. van Lenteren JC, Bueno VHP, Calvo FJ, Calixto AM, Montes FC (2018b) Comparative effectiveness and injury to tomato plants of three neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol. 111(3):1080–1086Google Scholar
  98. van Lenteren JC, Bueno VHP, Burgio G, Lanzoni A, Montes FC, Silva DB, de Jong PW, Hemerik L (2019) Pest kill rate as aggregate evaluation criterion to rank biological control agents: a case study with Neotropical predators of on tomato. Bull Entomol Res 1–9.  https://doi.org/10.1017/S0007485319000130PubMedCrossRefGoogle Scholar
  99. van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52(1):29–34PubMedPubMedCentralCrossRefGoogle Scholar
  100. Venzon M, Janssen A, Sabelis MW (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97:116–124CrossRefGoogle Scholar
  101. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  102. Wäckers FL, van Rijn PCJ, Bruin J (eds) (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK. 356 ppGoogle Scholar
  103. Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. Cornell University Press, Cornell, USA. 507 ppGoogle Scholar
  104. Wheeler AG, Krimmel BA (2015) Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Annu Rev Entomol 60:393–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joop C. van Lenteren
    • 1
    Email author
  • Oscar Alomar
    • 2
  • Willem J. Ravensberg
    • 3
  • Alberto Urbaneja
    • 4
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Centre de CabrilsCabrilsSpain
  3. 3.Koppert Biological SystemsBerkel en RodenrijsThe Netherlands
  4. 4.InstitutoValenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaMoncadaSpain

Personalised recommendations