Advertisement

Seed and Propagative Material

  • Gary P. MunkvoldEmail author
  • Maria Lodovica Gullino
Chapter
  • 36 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

The greenhouse environment can be very conducive for the establishment and spread of diseases introduced with planting material. Both seeds and vegetative planting material can be infected or contaminated by damaging pathogens, which often can be transmitted to the growing plant or become established in the greenhouse environment. Transmission from seeds or propagative material can occur with fungi and oomycetes, bacteria, viruses, viroids, and a few nematodes. The most effective way to prevent pathogen introduction is to follow best available pest and disease management practices in the seed production operation. The use of validated pathogen testing methods is critical among these practices. This chapter discusses the biology and management of some of the major diseases that can be introduced on seeds, cuttings, or transplants, in major greenhouse crops including tomato and pepper, cucurbits, leafy vegetables, and ornamentals.

Keywords

Bacteria Disease transmission Fungi Oomycetes Pathogens Sanitation Seed testing Seed treatment Viroids Viruses 

References

  1. Agarwal VK (2006) Seed health. International Book Distributing, LucknowGoogle Scholar
  2. Albrechtsen SE (2006) Chapter 2: seed transmission of viruses. In: Testing methods for seed-transmitted viruses: principles and protocols. CABI Publishing, Wallingford, pp 13–16. 268 ppCrossRefGoogle Scholar
  3. Ali A, Kobayashi M (2010) Seed transmission of Cucumber mosaic virus in pepper. J Virol Methods 163(2):234–237PubMedCrossRefGoogle Scholar
  4. Armstrong GM, Armstrong JK, Littrell RH (1970) Wilt of chrysanthemum caused by Fusarium oxysporum f. sp. chrysanthemi, forma specialis nov. Phytopathology 60:496–498CrossRefGoogle Scholar
  5. Baker RR, Nelson PE, Lawson RH (1985) Carnation. In: Strider DL (ed) Diseases of floral crops, vol 1. Praeger, New York, pp 507–563Google Scholar
  6. Barak JD, Koike ST, Gibertson RL (2002) Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. Plant Pathol 51:506–512CrossRefGoogle Scholar
  7. Barreto RW, Santin AM, Vieira BS (2008) Alternaria cichorii in Brazil on Cichorium spp. seeds and cultivated and weedy hosts. J Phytopathol 156:425–430CrossRefGoogle Scholar
  8. Bassi A, Goode MJ (1978) Fusarium oxysporum f. sp. spinaceae seedborne in spinach. Plant Dis Rep 62:203–205Google Scholar
  9. Belbahri I, Calmin G, Pawlowski J, Lefor TF (2005) Phylogenetic analysis and real time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol Res 109:1276–1287PubMedCrossRefGoogle Scholar
  10. Bullock S, Summerell BA, von Richter L (1998) First record of vascular wilt of flannel flower caused by Fusarium oxysporum. Australas Plant Pathol 27:49–50CrossRefGoogle Scholar
  11. Castagner GS, Byther RS (1985) Bulbs: narcissus, tulip and iris. In: Strider DL (ed) Diseases of floral crops, vol 2. Praeger, New York, pp 447–506Google Scholar
  12. Chen J, Henny RJ (2006) Ornamental foliage plants: improvement through biotechnology. In: Recent advances in plant biotechnology and its applications. Springer, Dordrecht/New YorkGoogle Scholar
  13. Ciccarese F (1987) Severe outbreaks of Verticillium wilt on Cichorium intybus and Brassica rapa and pathogenic variations among isolates of Verticillium dahliae. Plant Dis 71(12):1144CrossRefGoogle Scholar
  14. Claerbout J, Venneman S, Vandevelde J, Decombel A, Bleyaert P, Volckaer TA, Neukermans J, Hofte M (2018) First report of Fusarium oxysporum f. sp. lactucae race 4 on lettuce in Belgium. Plant Dis 102:1037CrossRefGoogle Scholar
  15. Cline MN, Chastagner GA, Aragaki M, Baker R, Daughtrey ML, Lawson RH, MacDonald JD, Tammen JF, Worf GL (1998) Current and future research directions of ornamental pathology. Plant Dis 72:926–934CrossRefGoogle Scholar
  16. Cohen A, Barzilay A, Vigodsky HH (1990) Hot water treatment in gladiolus cormels and their state of dormancy. Acta Hortic 266:495–503CrossRefGoogle Scholar
  17. Cohen Y, Rubin AE, Galperin M, Ploch S, Runge F et al (2014) Seed transmission of Pseudoperonospora cubensis. PLoS One 9(10):e109766.  https://doi.org/10.1371/journal.pone.0109766CrossRefPubMedPubMedCentralGoogle Scholar
  18. Constable F, Chambers G, Penrose L, Daly A, Mackie J, Davis K, Rodoni B, Gibbs M (2019) Viroid-infected tomato and Capsicum seed shipments to Australia. Viruses 11:98PubMedCentralCrossRefPubMedGoogle Scholar
  19. Cook HT (1935) Occurrence of oospores of Peronospora effusa with commercial spinach seeds. Phytopathology 25:11–12Google Scholar
  20. Copes WE, Chastagner GA, Hummel RL (2004) Activity of chlorine dioxide in a solution of ions and pH against Thielaviopsis basicola and Fusarium oxysporum. Plant Dis 88:188–194PubMedCrossRefGoogle Scholar
  21. Correll, J. Jones, J.P. (2014) Fusarium wilt. 28–29 Compendium of tomato diseases and pests, 2nd. Jones JB, Zitter TA, Momol TM, Miller SA, APS Press. St. PaulGoogle Scholar
  22. Correll JC, Morelock TE, Black MC, Koike ST, Brandenberger LP, Dainello FJ (1994) Economically important diseases of spinach. Plant Dis 78:653–660CrossRefGoogle Scholar
  23. Daughtrey M, Buitenhius R (2019) Ornamentals. In: Pest and disease Management of Greenhouse Crops. Springer Nature, Dordrecht, The Netherlands, in pressGoogle Scholar
  24. Davis RM, Subbarao KV, Raid RN, Kurtz EA (1997) Compendium of lettuce diseases. American Phytopathological Society Press, St. Paul, p 79Google Scholar
  25. Du Toit LJ, Derie ML, Hernandez-Perez P (2005) Verticillium wilt in spinach seed production. Plant Dis 89:4–11PubMedCrossRefGoogle Scholar
  26. Dutta B, Avci U, Hahn MG, Walcott RR (2012) Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathology 102:461–468PubMedCrossRefGoogle Scholar
  27. Elmer WH (2001) Seeds as vehicles for pathogen importation. Biol Invasions 3(3):263–271CrossRefGoogle Scholar
  28. Elmer WH, Daughtrey M (2012) Fusarium wilt of cyclamen. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable crops. APS Press, St Paul, pp 213–219Google Scholar
  29. Elmer WH, Wick RL, Haviland P (1994) Vegetative compatibility among Fusarium oxysporum f. sp. basilicum isolates recovered from basil seed and infected plants. Plant Dis 78:789–791CrossRefGoogle Scholar
  30. Farr DF, Rossman AY (2018) Fungal databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases
  31. Fatmi MB, Walcott RR, Schaad NW (2017) Detection of plant-pathogenic bacteria in seed and other planting material. APS Press, St. PaulCrossRefGoogle Scholar
  32. Faust JE, Dole JM, Lopez RG (2017) The floriculture vegetative cutting industry. In: Janick J (ed) Horticultural reviews, vol 44, 1st edn. Wiley-Blackwell, OxfordGoogle Scholar
  33. Feng J, Li J, Randhawa P, Bonde M, Schaad NW (2009) Evaluation of seed treatments for the eradication of Acidovorax avenae subsp. citrulli from melon and watermelon seeds. Can J Plant Pathol 31:180–185CrossRefGoogle Scholar
  34. Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with h-mutant bacteriophages. HortScience 35:882–884CrossRefGoogle Scholar
  35. Fujinaga M, Ogiso H, Tuchiya N, Saito H, Yamanaka S, Nozue M, Kojima M (2003) Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by differential system with commercial cultivars. J Gen Plant Pathol 69:23–28CrossRefGoogle Scholar
  36. Gamliel A, Katan T, Yunis H, Katan J (1996) Fusarium wilt and crown rot of sweet basil: involvement of soilborne and airborne inoculum. Phytopathology 86:56–62CrossRefGoogle Scholar
  37. Garibaldi A (1987) Research on substrates suppressive to Fusarium oxysporum and Rhizoctonia solani. Acta Hortic 221:271–277Google Scholar
  38. Garibaldi A, Gullino ML (1990) Disease management of ornamental plants: a never ending challenge. Meded Fac Landbouww Rijksuniv Gent 55:189–201Google Scholar
  39. Garibaldi A, Gullino ML (2010) Emerging soilborne diseases of horticultural crops and new trends in their management. Acta Horticolturae 883:37–47CrossRefGoogle Scholar
  40. Garibaldi A, Gullino ML (2012) Fusarium wil of carnation. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable crops. APS Press, St Paul, pp 2191–2198Google Scholar
  41. Garibaldi A, Migheli Q (1988) Osservazioni sull’uso della termoterapia combinata con la concia chimica dei bulbo-tuberi di gladiolo nella lotta a Fusarium oxysporum f. sp. gladioli. Atti Giornate Fitopatologiche 1:507–518Google Scholar
  42. Garibaldi A, Gullino ML, Minuto G (1997) Diseases of basil and their management. Plant Dis 81:124–132PubMedCrossRefPubMedCentralGoogle Scholar
  43. Garibaldi A, Gilardi G, Gullino ML (2004a) Seed transmission of Fusarium oxysporum f. sp. lactucae. Phytoparasitica 32:61–65CrossRefGoogle Scholar
  44. Garibaldi A, Gilardi G, Pasquali M, Keiji S, Gullino ML (2004b) Seed transmission of Fusarium oxysporum of Eruca vesicaria and Diplotaxis muralis. J Plant Dis Protect 111:345–350Google Scholar
  45. Garibaldi A, Minuto G, Bertetti D, Gullino ML (2004c) Seed transmission of Peronospora sp. of basil. J Plant Dis Protect 111:465–469Google Scholar
  46. Garibaldi A, Gilardi G, Gullino ML (2007) First report of Verticillium wilt caused by Verticillium dahliae on lettuce in Italy. Plant Dis 91:770PubMedCrossRefGoogle Scholar
  47. Garibaldi A, Bertetti D, Pensa P, Poli A, Gullino ML (2011) First report of a new Fusarium oxysporum causing wilt on jade plant (Crassula ovata) in Italy. Plant Dis 95:1991Google Scholar
  48. Geiser DN, Juba JH, Wang B, Jeffers SN (2001) Fusarium hostae sp. nov., a relative of F. redolens with a Gibberella teleomorph. Mycologia 93:670–678CrossRefGoogle Scholar
  49. Gilardi G, Garibaldi A, Gullino ML (2013a) Seed transmission of Plectosphaerella cucumerina, causal agent of leaf spot of Diplotaxis tenuifolia in Italy. Phytoparasitica 41:411–416CrossRefGoogle Scholar
  50. Gilardi G, Gullino ML, Garibaldi A (2013b) Occurrence of Alternaria spp. in seeds on basil and its pathogenicity. J Plant Pathol 95:41–47Google Scholar
  51. Gilardi G, Franco-Ortega S, van Rijswick P, Ortu G, Gullino ML, Garibaldi A (2017) A new race of Fusarium oxysporum f.sp. lactucae of lettuce. Plant Pathol 66:677–688CrossRefGoogle Scholar
  52. Gilardi G, Garibaldi A, Gullino ML (2018a) Emerging pathogens as a consequence of globalization and climate change: leafy vegetables as a case study. Phytopathol Mediterr 57:146–152Google Scholar
  53. Gilardi G, Gullino ML, Garibaldi A (2018b) New pathogens of leafy vegetables. OEPP/EPPO Bull 48:116–122CrossRefGoogle Scholar
  54. Gleason ML, Gitaitis RD, Miller SA (2014) Bacterial canker. In: Jones JB, Zitter TA, Momol TM, Miller SA (eds) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. Paul, pp 50–53Google Scholar
  55. Grogan RG (1980) Control of lettuce mosaic virus with virus free seed. Plant Dis 64:446–449CrossRefGoogle Scholar
  56. Gullino ML (2012) Fusarium wilts of bulb crops. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable crops. APS Press, St Paul, pp 199–204Google Scholar
  57. Gullino ML, Garibaldi (2006) Evolution of fungal diseases of ornamental plants and main implications for their management. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. Global Science Books, London, pp 464–471Google Scholar
  58. Gullino M.L., Garibaldi, A. (2012) Fusarium wilts of minor ornamental crops. Fusarium wilts of greenhouse vegetable crops (Gullino M.L., Katan J., Garibaldi A.), APS Press, St Paul, 221–225,Google Scholar
  59. Gullino ML, Munkvold G (eds) (2014) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht. 136 pagesGoogle Scholar
  60. Gullino ML, Wardlow LR (1999) Ornamentals. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Dordreth, pp 486–505CrossRefGoogle Scholar
  61. Haegi A, Catalano V, Luongo L, Vitale S, Scotton M, Ficcadenti N, Belisario A (2013) A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103:802–810PubMedCrossRefGoogle Scholar
  62. Hahm YL (1998) Occurrence of Fusarium wilt on lisianthus (Eustoma grandiflorum) caused by Fusarium oxysporum f. sp. eustomae. Korean J Plant Pathol 14:188–190Google Scholar
  63. Hernandez-Perez P, du Toit LJ (2006) Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. Plant Dis 90:137–145PubMedCrossRefGoogle Scholar
  64. Herrera-Vasquez JA, Cordoba-Sellés MC, Cebrian MC, Alfaro-Fernandez A, Jorda C (2009) Seed transmission of Melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathol 58:436–442CrossRefGoogle Scholar
  65. Hollings M, Komuro Y, Tochihara H (1975) Cucumber green mottle mosaic virus. In: Descriptions of plant viruses, no. 154. CAB International Mycological Institute and Association of Applied Biologists, KewGoogle Scholar
  66. Huang CH, Roberts PD, Datnoff LE (2012) Fusarium diseases of tomato. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable crops. APS Press, St Paul, pp 145–158Google Scholar
  67. Hubbard JC, Gerik JS (1993) A new wilt disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Dis 77:750–754CrossRefGoogle Scholar
  68. Inaba T, Takahashi K, Morinaka T (1983) Seed transmission of spinach downy mildew. Plant Dis 67:1139–1141CrossRefGoogle Scholar
  69. Inami K, Yoshioka C, Hirano Y et al (2010) Real-time PCR for differential determination of the tomato wilt fungus, Fusarium oxysporum f. sp. lycopersici, and its races. J Gen Plant Pathol 76:116.  https://doi.org/10.1007/s10327-010-0224-7CrossRefGoogle Scholar
  70. International Seed Federation (2013) ISF viewpoint on indirect seed health tests. www.worldseed.org/wp-content/uploads/2015/10/Indirect_Seed_Health_Tests_2013.pdf
  71. International Seed Federation (2018) International Seed Federation, 2013. http://www.worldseed.org/wp-content/uploads/2018/02/Pospiviroids_tomato_Feb2018.pdf
  72. Jarvis WR (1988) Fusarium crown and root rot of tomatoes. Phytoprotection 69:49–64Google Scholar
  73. Jenkins SF, Wehner TC (1983) Occurrence of Fusarium oxysporum f.sp. cucumerinum on greenhouse-grown Cucumis sativus seed stocks in North Carolina. Plant Dis 67:1024–1025CrossRefGoogle Scholar
  74. Jones JB, Miller SA (2014) Bacterial spot. In: Jones JB, Zitter TA, Momol TM, Miller SA (eds) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. Paul, pp 55–57Google Scholar
  75. Jones JB, Zitter TA, Momol TM, Miller SA (eds) (2014) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. PaulGoogle Scholar
  76. Kaewkham T, Hynes RK, Siri B (2016) The effect of accelerated seed ageing on cucumber germination following seed treatment with fungicides and microbial biocontrol agents for managing gummy stem blight by Didymella bryoniae. Biocontrol Sci Tech 26:1048–1061CrossRefGoogle Scholar
  77. Keinath AP (2017) Gummy stem blight. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 59–60CrossRefGoogle Scholar
  78. Kenigsbuch D, Chalupowicz D, Aharon Z, Maurer D, Ovadia A, Aharoni N (2010) Preharvest solar heat treatment for summer basil (Ocimum basilicum) affects decay during shipment and shelf life. Acta Hortic 880:161–166CrossRefGoogle Scholar
  79. Kim SM, Nam SH, Lee JM, Yim KO, Kim KH (2003) Destruction of Cucumber greenmottle mosaic virus by heat treatment and rapid detection of virus inactivation by RT-PCR. Mol Cells 16:338–342PubMedGoogle Scholar
  80. Koike ST, Gilbertson RL, Bull CT (2017) Bacterial leaf spot. In: Subbarao KV, Davis RM, Gilbertson RL, Raid RN (eds) Compendium of lettuce diseases, 2nd edn. APS Press, St. Paul, pp 54–56Google Scholar
  81. Kunjieti SG, Anchieta AG, Subbarao KV, Koike ST, Klosterman SJ (2016) Plasmolysis and vital staining reveal viable oospores of Peronospora effusa in spinach seed lots. Plant Dis 10:59–65Google Scholar
  82. Lee DH, Mathur SB, Neergaard P (1984) Detection of location of seed-borne inoculum of Didymella bryoniae and its transmission in seedlings of cucumber and pumpkin. J Phytopathol 109:301–308CrossRefGoogle Scholar
  83. Linderman RG (1981) Fusarium diseases of floweruing bulb crops. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, pp 129–141Google Scholar
  84. Magie RO, Wilfret GJ (1974) Tolerance of Fusarium oxysporum f. sp. gladioli to benzimidazole fungicides. Plant Dis Rep 58:256–259Google Scholar
  85. Magie RO (1985) Gladiolus. In: Strider DL (ed) Diseases of floral crops, vol 1. Praeger, New York, pp 189–226Google Scholar
  86. Martini P, Gullino ML (1991) Trasmissibilità per seme di Fusarium oxysporum f. sp. basilicum agente della tracheofusariosi del basilico. Informatore Fitopatologico 41(9):59–61Google Scholar
  87. Maruthachalam K, Klosterman SJ, Ancheta A, Mou BQ, Subbarao KV (2013) Colonization of spinach by Verticillium dahliae and effects of pathogen localization on the efficacy of seed treatments. Phytopathology 103:268–280PubMedCrossRefGoogle Scholar
  88. Matheron, M, Gullino, M.L. (2012) Fusarium wilt of lettuce and other salad crops. Gullino ML, Katan J, Garibaldi A Fusarium wilt of greenhouse vegetable and ornamental crops. APS Press, St. Paul, 175–183Google Scholar
  89. Mathur SB, Kongsdal O (2003) Common laboratories seed health testing methods for detecting fungi. International Seed Testing Association, BassersdorfGoogle Scholar
  90. Matsushita Y, Tsuda S (2017) Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. Eur J Plant Pathology 145:1007–1011CrossRefGoogle Scholar
  91. Matuo T, Motohashi S (1967) On Fusarium oxysporum f. sp. lactucae n. f. causing root rot on lettuce. Trans Mycol Soc Jpn 32:13–15Google Scholar
  92. Menzies JG, Jarvis WR (1994) The infestation of tomato seed by Fusarium oxysporum f.sp. radicis-lycopersici. Plant Pathol 43:378–386CrossRefGoogle Scholar
  93. Migheli Q, Garibaldi A (1990) Effetto della termoterapia combinata con la concia chimica su bulbi di iris artificialmente inoculati con Fusarium oxysporum f. sp. gladioli e Penicillium corymbiferum. Atti Giornate Fitopatologiche 2:297–306Google Scholar
  94. Migheli Q, Garibaldi A (1994) Termoterapia e concia chimica di bulbo-tuberi di gladiolo infetti da Fusarium oxysporum f. sp. gladioli. Atti Giornate Fitopatologiche 1:297–304Google Scholar
  95. Minuto A, Gullino ML, Garibaldi A (2007) Gerbera jamesonii, Osteospermum sp., and Argyranthemum frutescens new hosts of Fusarium oxysporum f. sp. chrysanthemi. J Phytopathol 155:373–376CrossRefGoogle Scholar
  96. Moore WC (1979) Diseases of bulbs, 2nd edn (Dickens JSW ed). Bulletin. HPD, Ministry of Agriculture, Fisheries and Food, London, 205 pagesGoogle Scholar
  97. Nathaniels NQR (1985) Phoma valerianellae on corn salad. Plant Pathol 34:449–450CrossRefGoogle Scholar
  98. Ohata KI, Seruzawa K, Azegami K, Shirata A (1982) Possibility of seed transmission of Xanthomonas campestris pv. vitians, the pathogen of bacterial spot of lettuce. Bull Natl Inst Agric Sci C 36:81–88Google Scholar
  99. Parker S, Sanjeev G (2017) Seed health testing. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 10–11Google Scholar
  100. Pellegrino C, Gilardi G, Gullino ML, Garibaldi A (2010) Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica 38:159–165CrossRefGoogle Scholar
  101. Perzezny K, Roberts PD, Murphy JF, Goldberg NP (eds) (2003) Compendium of pepper diseases. APS Press, St. PaulGoogle Scholar
  102. Provvidenti R, Gilbertson RL (2017) Zucchini yellow mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 139–141Google Scholar
  103. Raabe RD (1957) Fusarium wilt of Hebe buxifolia. Phytopathology 47:532Google Scholar
  104. Raabe RD (1985a) Fusarium wilt of Eustoma grandiflora. Phytopathology 75:1306Google Scholar
  105. Raabe RD (1985b) Fusarium wilt of Hebe species. Plant Dis 69:450–451CrossRefGoogle Scholar
  106. Rattink H (1977) Spread of Fusarium spp. in carnations by means of water. Acta Hortic 71:103–105CrossRefGoogle Scholar
  107. Rattink H (1982) Verwelkingsziekte bij cyclamen (in dutch). Bloemisterijonderzoek Ned 1981:111–113Google Scholar
  108. Rees AR (1992) Ornamental bulbs, corms and tubers. CAB International, Wallingford. 220 pagesGoogle Scholar
  109. Roebroeck EJA, Jansen MJW, Mes JJ (1991) A mathematical model describing the combined effect of exposure time and temperature of hot-water treatments on survival of gladiolus cormels. Ann Appl Biol 119(1):89–96CrossRefGoogle Scholar
  110. Schindler AF, Stewart RN, Siemeniuk P (1961) A synergist Fusarium-nematode interaction in carnation. Phytopathology 51:143–146Google Scholar
  111. Schroers H-J, Baayen RP, Meffert JP, de Gruyter J, Hooftman M, O’Donnell K (2004) Fusarium foetens, a new species pathogenic to Begonia elatior hybrids (Begonia × hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96:393–406PubMedGoogle Scholar
  112. Sharma N, Tripathi A (2008) Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C and Hyptis suavelons (L.) Poit. Essential oil. Postharvest Biol Technol 47:246–254CrossRefGoogle Scholar
  113. Simmons HE, Dunham JP, Zinn KE, Munkvold GP, Holmes EC, Stephenson AG (2013) Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Res 176:259–264.  https://doi.org/10.1016/j.virusres.2013.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  114. Simmons HE, Prendeville HR, Dunham JP, Ferrari MJ, Earnest JD, Pilson D, Munkvold GP, Holmes EC, Stephenson AG (2015) Transgenic virus-resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of Zucchini yellow mosaic virus. Plant Dis 99:1616–1621PubMedCrossRefGoogle Scholar
  115. Simpson BB, Ogorzaly MC (1986) Economic botany, plants in our world, 2nd edn. McGraw–Hill, New York, NYGoogle Scholar
  116. Sudisha J, Niranjana SR, Umesha S, Prakash HS, Shetty HS (2006) Transmission of seed-borne infection of muskmelon by Didymella bryoniae and effect of seed treatments on disease incidence and fruit yield. Biol Control 37:196–205CrossRefGoogle Scholar
  117. Taba S, Takara A, Nasu K, Miyahira N, Takushi T, Moromizato Z (2009) Alternaria leaf spot of basil caused by Alternaria alternata in Japan. J Gen Plant Pathol 75:160–162CrossRefGoogle Scholar
  118. Tancos MA, Chalupowicz L, Barash I, Manulis-Sasson S, Smart CD (2013) Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. Appl Environ Microbiol 79:6948–6957PubMedPubMedCentralCrossRefGoogle Scholar
  119. Taylor A, Clarkson J (2018) Technical review on lettuce Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae. AHDB Horticulture, CP17/18-1006 projectGoogle Scholar
  120. Tesoriero LA, Chambers G, Srivastava M, Smith S, Conde B, Tran-Nguyen LTT (2016) First report of cucumber green mottle mosaic virus in Australia. Australas Plant Dis Notes 11:1–3CrossRefGoogle Scholar
  121. Thines M, Telle S, Ploch S, Runge F (2009) Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol Res 113:532–540PubMedCrossRefGoogle Scholar
  122. Tian T, Posis K, Maroon-Lango CJ, Mavrodieva V, Haymes S, Pitman TL, Falk BW (2014) First report of Cucumber green mottle mosaic virus on melon in the United States. Plant Dis 98:1163–1164PubMedCrossRefGoogle Scholar
  123. Tian Y, Liu D, Zhao Y, Wu J, Hu B, Walcott RR (2017) Visual detection of Didymella bryoniae in cucurbit seeds using a loop-mediated isothermal amplification assay. Eur J Plant Pathol 147(2):255–263CrossRefGoogle Scholar
  124. Tompkins RM, Snyder WC (1972) Cyclamen wilt in California and its control. Plant Dis Rep 56:493–497Google Scholar
  125. Vallad GE, Bhat RG, Koike ST, Ryder E, Subbarao KV (2005) Weedborne reservoirs and seed transmission of in lettuce. Plant Dis 89(3):317–324PubMedCrossRefGoogle Scholar
  126. van Brunschot SL, Verhoeven JTJ, Persley DM, Geering ADW, Drenth A, Thomas JE (2014) An outbreak of Potato spindle tuber viroid in tomato is linked to imported seed. Eur J Plant Pathol 139(1):1–7CrossRefGoogle Scholar
  127. Vannacci G, Cristiani C, Forti M, Kontoudakis P, Gambogi P (1999) Seed transmission of Fusarium oxysporum f. sp. basilici in sweet basil. J Plant Pathol 81:47–53Google Scholar
  128. Walcott RR, Feng J, Gitaitis RD (2017) Detection of Acidovorax citrulli in cucurbit seeds. Ch. 26. In: Fatmi M, Walcott RR, Schaad NW (eds) Detection of plant pathogenic Bacteria in seed and other planting material, 2nd edn. APS Press, St Paul, pp 179–187CrossRefGoogle Scholar
  129. Yang Y, Kim K-S, Anderson EJ (1997) Seed transmission of cucumber mosaic virus in spinach. Phytopathology 87(9):924–931PubMedCrossRefGoogle Scholar
  130. Zitter TA (2014) Tobacco mosaic virus and tomato mosaic virus. In: Jones JB, Zitter TA, Momol TM, Miller SA (eds) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. Paul, pp 90–91Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Plant Pathology and MicrobiologyIowa State UniversityAmesUSA
  2. 2.Centro di Competenza per l’innovazione in campo agro-ambientale AGROINNOVAUniversità degli Studi di TorinoGrugliascoItaly

Personalised recommendations