Advertisement

Viral Diseases

  • Enrique Moriones
  • Eric VerdinEmail author
Chapter
  • 33 Downloads
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 9)

Abstract

Viruses cause many important plant diseases and are responsible for yield and quality losses in crops in all parts of the world. No curative methods are available for infected plants and the main control strategies are cultural practices including prophylactic measures to prevent virus arrival, installation and spread into the crop or use genetic resistance to limit disease damage. Factors driving viral emergence include genetic variability of plant viruses, changes in agricultural practices, exchanges of plant material and new introduction or increase in the population of insect vectors in the environnent of the crops. In this review, we briefly describe the most important viruses emerging in economically important vegetable greenhouse crops including pepper, tomato and cucurbit species.

Keywords

Virus Emergence Vector Diversity Resistance Tomato Pepper Melon Zuchini Cucurbit 

References

  1. Abrahamian PE, Abou-Jawdah Y (2014) Whitefly-transmitted criniviruses of cucurbits: current status and future prospects. Virus Dis 25:26–38CrossRefGoogle Scholar
  2. Ainsworth GC (1935) Mosaic diseases of cucumber. Ann Appl Biol 22:55–67CrossRefGoogle Scholar
  3. Alabi OJ, Al Rwahnih M, Jifon JL, Gregg L, Crosby KM, Mirkov TE (2015) First report of pepper vein yellows virus infecting pepper (Capsicum spp.) in the United States. Plant Dis 99:1656CrossRefGoogle Scholar
  4. Alegbejo MD, Abo ME (2002) Ecology, epidemiology and control of Pepper Veinal Mottle Virus (PVMV), genus potyvirus, in West Africa. J Sustain Agric 20:5–16CrossRefGoogle Scholar
  5. Ali A, Kobayashi M (2010) Seed transmission of cucumber mosaic virus in pepper. J Virol Methods 163:234–237CrossRefGoogle Scholar
  6. Amari K, Gonzalez-Ibeas D, Gomez P, Sempere RN, Sanchez-Pina MA, Aranda MA, Diaz-Pendon JA, Navas-Castillo J, Moriones E, Blanca J, Hernandez-Gallardo MD, Anastasio G (2008) Tomato torrado virus is transmitted by Bemisia tabaci and infects pepper and eggplant in addition to tomato. Plant Dis 92:1139PubMedCrossRefGoogle Scholar
  7. Anandam RJ, Doraiswamy S (2002) Role of barrier crops in reducing the incidence of mosaic disease in chilli. J Plant Dis Protect 109:109–112Google Scholar
  8. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544PubMedCrossRefGoogle Scholar
  9. Antignus Y (2007) The management of tomato yellow leaf curl virus in greenhouses and the open field, a strategy of manipulation. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Netherlands, pp 263–278CrossRefGoogle Scholar
  10. Antignus Y, Lachman O, Pearlsman M, Omer S, Yunis H, Messika Y, Uko O, Koren A (2003) Squash leaf curl geminivirus – a new illegal immigrant from the western hemisphere and a threat to cucurbit crops in Israel. Phytoparasitica 31:415Google Scholar
  11. Antignus Y, Lachman O, Pearlsman M, Maslenin L, Rosner A (2008) A new pathotype of pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars. Plant Dis 92:1033–1037PubMedCrossRefGoogle Scholar
  12. Aramburu J, Lavina A, Moriones E, Riudavets J, Arno J (1997) The proportion of viruliferous individuals in field populations of Frankliniella occidentalis: implications for tomato spotted wilt virus epidemics in tomato. Eur J Plant Pathol 103:623–629Google Scholar
  13. Avilla C, Collar JL, Duque M, Fereres A (1997a) Yield of bell pepper (Capsicum annuum) inoculated with CMV and/or PVY at different time intervals. J Plant Dis Protect 104:1–8Google Scholar
  14. Avilla C, Collar JL, Duque M, Perez P, Fereres A (1997b) Impact of floating rowcovers on bell pepper yield and virus incidence. HortScience 32:882–883CrossRefGoogle Scholar
  15. Barbosa JC, Teixeira LDD, Rezende JAM (2010) First report on the susceptibility of sweet pepper crops to tomato chlorosis virus in Brazil. Plant Dis 94:374PubMedCrossRefGoogle Scholar
  16. Boiteux LS (1995) Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theor Appl Genet 90:146–149PubMedCrossRefGoogle Scholar
  17. Broadbent L (1976) Epidemiology and control of tomato mosaic virus. Annu Rev Phytopathol 14:75–96CrossRefGoogle Scholar
  18. Brown JK, Poulos BT (1990) Serrano Golden mosaic virus: a newly identified whitefly-transmitted geminivirus of pepper and tomato in the United States and Mexico. Plant Dis 74:720CrossRefGoogle Scholar
  19. Brown JK, Idris AM, Alteri C, Stenger DC (2002) Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortments with related viruses in the squash leaf curl virus cluster. Phytopathology 92:734–742PubMedCrossRefGoogle Scholar
  20. Brown J, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva J, Fiallo-Olive E, Briddon R, Hernandez-Zepeda C, Idris A, Malathi VG, Martin D, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619PubMedCrossRefGoogle Scholar
  21. Brunt AA (1986) Tomato mosaic virus. In: Van Regenmortel MHV, Fraenkel-Conrat H (eds) The plant viruses: the rod-shaped plant viruses. Plenum Press, New York, pp 181–204CrossRefGoogle Scholar
  22. Brunt AA, Kenten RH, Phillips S (1978) Symptomatologically distinct strains of pepper veinal mottle viru from four (4) West African Solanaceous crops. Ann Appl Biol 88:115–119CrossRefGoogle Scholar
  23. Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L (1996) Viruses of plants. Descriptions and lists from the VIDE database. CAB International, WallingfordGoogle Scholar
  24. Buzkan N, Arpaci BB, Simon V, Fakhfakh H, Moury B (2013) High prevalence of poleroviruses in field-grown pepper in Turkey and Tunisia. Arch Virol 158:881–885PubMedCrossRefGoogle Scholar
  25. Caranta C, Lefebvre V, Palloix A (1997a) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant-Microbe Interact 10:872–878CrossRefGoogle Scholar
  26. Caranta C, Palloix A, Lefebvre V, Daubèze AM (1997b) QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host-cells. Theor Appl Genet 94:431–438CrossRefGoogle Scholar
  27. Cherif C, Spire D (1983) Identification du virus de rabourgrissement buissoneux de la tomate (Tomato bushy stunt virus) en Tunisie sur tomate, piment et aubergine: quelques caractéristiques de la souche tunisiennes. Agronomie 3:701–706CrossRefGoogle Scholar
  28. Chu MH, Lopez-Moya JJ, Llave-Correas C, Pirone TP (1997) Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Mol Plant-Microbe Interact 10:472–480PubMedCrossRefGoogle Scholar
  29. Chung BYW, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci 105:5897–5902PubMedCrossRefGoogle Scholar
  30. Collar JL, Avilla C, Fereres A (1997) New correlations between aphid stylet paths and non-persistent virus transmission. Environ Entomol 26:537–544CrossRefGoogle Scholar
  31. Costa TM, Blawid R, da Costa Junior AC, Lima MF, de Aragao FAS, de Andrade GP, Pio-Ribeiro G, Aranda MA, Inoue-Nagata AK, Nagata T (2017) Complete genome sequence of melon yellowing-associated virus from melon plants with the severe yellowing disease in Brazil. Arch Virol 162:3899–3901PubMedCrossRefGoogle Scholar
  32. Crespo O, Janssen D, Garcia C, Ruiz L (2017) Biological and molecular diversity of cucumber green mottle mosaic virus in Spain. Plant Dis 101:977–984PubMedCrossRefGoogle Scholar
  33. Darzi E, Smith E, Shargil D, Lachman O, Ganot L, Dombrovsky A (2017) The honey bee Apis mellifera contributes to cucumber green mottle mosaic virus spread via pollination. Plant Pathol n/aGoogle Scholar
  34. Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR (1997) Tospoviruses strike the greenhouse industry: INSV has become a major pathogen on flower crops. Plant Dis 81:1220–1230PubMedCrossRefGoogle Scholar
  35. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefGoogle Scholar
  36. Dietzgen RG, Mann KS, Johnson KN (2016) Plant virus-insect vector interactions: current and potential future research directions. Viruses 8:303PubMedCentralCrossRefPubMedGoogle Scholar
  37. Dogimont C, Palloix A, Daubèze AM, Marchoux G, Gébré-Sélassié K, Pochard E (1996) Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (Capsicum annuum L.). Euphytica 88:231–239CrossRefGoogle Scholar
  38. Dombrovsky A, Glanz E, Pearlsman M, Lachman O, Antignus Y (2010) Characterization of pepper yellow leaf curl virus, a tentative new Polerovirus species causing a yellowing disease of pepper. Phytoparasitica 38:477–486CrossRefGoogle Scholar
  39. Dombrovsky A, Tran-Nguyen LTT, Jones RAC (2017) Cucumber green mottle mosaic virus: rapidly increasing global distribution, etiology, epidemiology, and management. Annu Rev Phytopathol 55:231–256PubMedCrossRefGoogle Scholar
  40. Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, Zhang LZ, Su XX, McBeath JH, Zhang ZK (2008) Characterization of tomato zonate spot virus, a new tospovirus in China. Arch Virol 153:855–864PubMedCrossRefGoogle Scholar
  41. Duffus JE (1960) Radish yellows, a disease of radish, sugar beet and other crops. Phytopathology 50:389–394Google Scholar
  42. Duffy S, Holmes EC (2007) Multiple introductions of the old world begomovirus tomato yellow leaf curl virus into the new world. Phytopathology 50:389–394Google Scholar
  43. Edwardson JR, Christie RG (1991) Cucumoviruses. In: CRC handbook of viruses infecting legumes. CRC Press, Boca Raton, pp 293–319Google Scholar
  44. Edwardson JR, Christie RG (1997) Viruses infecting peppers and other solanaceous crops, vol 1. University of Florida, p 336Google Scholar
  45. Elena SF, Fraile A, Garcia-Arenal F (2014) Evolution and emergence of plant viruses. Adv Virus Res 88:161–191PubMedCrossRefGoogle Scholar
  46. Fajinmi AA (2011) Agro-ecological incidence and severity of pepper veinal mottle virus, genus Potyvirus, family Potyviridae, on cultivated pepper (Capsicum annuum L.) in Nigeria. Arch Phytopathol Plant Protect 44:307–319CrossRefGoogle Scholar
  47. Fereres A (2000) Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res 71:221–231PubMedCrossRefGoogle Scholar
  48. Fernandes F, de Albuquerque L, Britto Giordano L, Boiteux L, de Avila A, Inoue-Nagata A (2008) Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Genes 36:251–258PubMedCrossRefGoogle Scholar
  49. Florini DA, Zitter TA (1987) Cucumber mosaic virus (CMV) in peppers (C. annuum L.) in New York and associated yield losses. Phytopathology 77:652Google Scholar
  50. Fortes IM, Moriones E, Navas-Castillo J (2012) Tomato chlorosis virus in pepper: prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Pathol 61:994–1001CrossRefGoogle Scholar
  51. Gallitelli D, Russo M (1987) Some properties of Moroccan pepper virus and tombusvirus Neckar. J Phytopathol 199:106–110CrossRefGoogle Scholar
  52. Garcia-Arenal F, McDonald BA (2003) An analysis of the durability of resistance to plant viruses. Phytopathology 93:941–952PubMedPubMedCentralCrossRefGoogle Scholar
  53. Garzon-Tiznado JA, Torres-Pacheco I, Ascencio-Ibanez JT, Herrera-Estrella L, Rivera-Bustamante RF (1993) Inoculation of peppers with infectious clones of a new geminivirus by a biolistic procedure. Phytopathology 53:514–521CrossRefGoogle Scholar
  54. Genda Y, Kanda A, Hamada H, Sato K, Ohnishi J, Tsuda S (2007) Two amino acid substitutions in the coat protein of pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology 97:787–793PubMedCrossRefGoogle Scholar
  55. Genda Y, Sato K, Nunomura O, Hirabayashi T, Tsuda S (2011) Immunolocalization of pepper mild mottle virus in developing seeds and seedlings of Capsicum annuum. J Gen Plant Pathol 77:201–208CrossRefGoogle Scholar
  56. Geraud-Pouey F, Chirinos DT, Galindo-Castro I, Franco MA, Santana MA, Gillis A, Romay G (2016) Occurrence of six begomoviruses infecting tomato fields in Venezuela and genetic characterization of potato yellow mosaic virus isolates. J Phytopathol 164:697–703CrossRefGoogle Scholar
  57. German TL, Ullman DE Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny and vector relationships. Annu Rev Phytopathol 30:315–348PubMedCrossRefGoogle Scholar
  58. Gomez P, Sempere RN, Amari K, Gomez-Aix C, Aranda MA (2010) Epidemics of tomato torrado virus, pepino mosaic virus and tomato chlorosis virus in tomato crops: do mixed infections contribute to torrado disease epidemiology? Ann Appl Biol 156:401–410CrossRefGoogle Scholar
  59. Gomez P, Sempere R, Aranda M, Elena S (2012a) Phylodynamics of Pepino mosaic virus in Spain. Eur J Plant Pathol 134:445–449CrossRefGoogle Scholar
  60. Gomez P, Sempere R, Aranda MA (2012b) Pepino mosaic virus and tomato torrado virus: two emerging viruses affecting tomato crops in the Mediterranean basin. In: Loebenstein G, Lecoq H (eds) Viruses and virus diseases of vegetables in the Mediterranean basin. Advances in virus research. Academic, pp 505–532Google Scholar
  61. Gorsane F, Fekih-Hassen I, Gharsallah-Chouchene S, Nakhla MK, Maxwell DP, Marrakchi M, Fakhfakh H (2004). Typing of Tomato yellow leaf curl virus spreading on pepper in Tunisia. Proceedings of the XIIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, Noordwijkerhout, Netherlands, 17–19 May, 2004, p. 182Google Scholar
  62. Goto T, Iizuka N, Komochi S (1984) Selection and utilization of an attenuated isolate of pepper strain of tobacco mosaic virus. Phytopathol Soc Jpn 50:221228Google Scholar
  63. Gracia O, Feldman JM (1974) Tobacco streak virus in pepper. Phytopathol Z 80:313–323CrossRefGoogle Scholar
  64. Green SK, Kim JS (1991) Characteristics and control of viruses infecting peppers, a literature review. Tech Bull Asian Veg Res Dev Cent 18:60Google Scholar
  65. Hagiwara K, Ichiki TU, Ogawa Y, Omura T, Tsuda S (2002) A single amino acid substitution in 126-kDa protein of pepper mild mottle virus associates with symptom attenuation in pepper; the complete nucleotide sequence of an attenuated strain, C-1421. Arch Virol 147:833–840PubMedCrossRefGoogle Scholar
  66. Hamada H, Takeuchi S, Kiba A, Tsuda S, Hikichi Y, Okuno T (2002) Amino acid changes in pepper mild mottle virus coat protein that affect L3 gene-mediated resistance in pepper. J Gen Plant Pathol 68:155–162CrossRefGoogle Scholar
  67. Hanssen IM, Lapidot M (2012) Major tomato viruses in the Mediterranean Basin. Adv Virus Res 84:31–66PubMedCrossRefGoogle Scholar
  68. Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanachter ACRC, Thomma BPHJ (2009) Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol 58:450–460CrossRefGoogle Scholar
  69. Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. Mol Plant-Microbe Interact 23:539–548CrossRefGoogle Scholar
  70. Hatala Zseller I, Kiss EF (1999) Control of Frankliniella occidentalis and TSWV in capsicum crops in Hungary. EPPO Bulletin 29:63–67CrossRefGoogle Scholar
  71. Hidayat S, Opriana E, Manzila I, Sujiprihati S (2012) Occurrence of Chili veinal mottle virus (ChiVMV) in Indonesia and response of Chili germplasms to ChiVMV infection. J ISSAAS 18:55–61Google Scholar
  72. Hooks CRR, Fereres A (2006) Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool. Virus Res 120:1–16PubMedCrossRefGoogle Scholar
  73. Ichiki TU, Nagaoka EN, Hagiwara K, Sasaya T, Omura T (2009) A single residue in the 126-kDa protein of pepper mild mottle virus controls the severity of symptoms on infected green bell pepper plants. Arch Virol 154:489–493PubMedCrossRefGoogle Scholar
  74. Jain RK, Bag S, Awasthi LP (2005) First report of natural infection of Capsicum annuum by tobacco streak virus in India. Plant Pathol 54:257CrossRefGoogle Scholar
  75. Janssen D, Saez E, Segundo E, Martın G, Gil F, Cuadrado IM (2005) Capsicum annuum a new host of Parietaria mottle virus in Spain. Plant Pathol 54:567CrossRefGoogle Scholar
  76. Janzac B, Fabre F, Palloix A, Moury B (2009) Phenotype and spectrum of action of the Pvr4 resistance in pepper against potyviruses, and selection for virulent variants. Plant Pathol 58:443–449CrossRefGoogle Scholar
  77. Janzac B, Willemsen A, Cuevas JM, Glais L, Tribodet M, Verrier JL, Elena SF, Jacquot E (2015) Brazilian potato virus Y isolates identified as members of a new clade facilitate the reconstruction of evolutionary traits within this species. Plant Pathol 64:799–807CrossRefGoogle Scholar
  78. Johansen E, Edwards MC, Hampton RO (1994) Seed transmission of viruses: current perspectives. Annu Rev Phytopathol 32:363–386CrossRefGoogle Scholar
  79. Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596PubMedCrossRefGoogle Scholar
  80. Kassem MA, Sempere RN, Juarez M, Aranda MA, Truniger V (2007) Cucurbit aphid-borne yellows virus is prevalent in field-grown cucurbit crops of Southeastern Spain. Plant Dis 91:232–238PubMedCrossRefGoogle Scholar
  81. Kenyon L, Kumar S, Tsai WS, Hughes JD (2014a) Virus diseases of peppers (Capsicum spp.) and their control. Adv Virus Res 90:297–354PubMedCrossRefGoogle Scholar
  82. Kenyon L, Tsai WS, Shih SL, Lee LM (2014b) Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104–113PubMedCrossRefGoogle Scholar
  83. Kil EJ, Park J, Choi HS, Kim CS, Lee S (2017) Seed transmission of tomato yellow leaf curl virus in white soybean (Glycine max). Plant Pathol J 33:424–428PubMedPubMedCentralCrossRefGoogle Scholar
  84. Knierim D, Tsai WS, Kenyon L (2013) Analysis of sequences from field samples reveals the presence of the recently described pepper vein yellows virus (genus Polerovirus) in six additional countries. Arch Virol 158:1337–1341PubMedCrossRefGoogle Scholar
  85. Kwak HR, Kim MK, Nam M, Kim JS, Kim KH, Cha B, Choi HS (2013) Genetic compositions of Broad bean wilt virus 2 infecting red pepper in Korea. Plant Pathol J 29:274–284PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lal SB, Singh S (1988) Identification of some virus diseases of vegetable crops in Afghanistan. Plant Prot Bull (Faridabad) 36:83–89Google Scholar
  87. Lapidot M, Gelbart D, Gal-On A, Sela N, Anfoka G, Haj Ahmed F, Abou-Jawada Y, Sobh H, Mazyad H, Aboul-Ata AA, Kamal El-Attar A, Ali-Shtayeh M, Jamous R, Polston J, Duffy S (2014a) Frequent migration of introduced cucurbit-infecting begomoviruses among Middle Eastern countries. Virol J 11:181PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lapidot M, Legg JP, Wintermantel WM, Polston JE (2014b) Management of whitefly-transmitted viruses in open-field production systems. Adv Virus Res 90:147–206. Control of Plant Virus Diseases Seed-Propagated Crops. Academic Press, pp. 147–206PubMedCrossRefGoogle Scholar
  89. Lecoq H, Katis N (2014) Control of cucurbit viruses. Adv Virus Res 90:255–296PubMedCrossRefGoogle Scholar
  90. Lefeuvre P, Moriones E (2015) Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 10:14–19PubMedCrossRefGoogle Scholar
  91. Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA, Meredith S, Lakay F, Monjane A r, Lett JM, Varsani A, Heydarnejad J (2010) The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog 6:e1001164PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li JX, Liu SS, Gu QS (2015) Transmission efficiency of cucumber green mottle mosaic virus via seeds, soil, pruning and irrigation water. J Phytopathol 164:300–309. n/aCrossRefGoogle Scholar
  93. Liu HW, Luo LX, Li JQ, Liu PF, Chen XY, Hao JJ (2014) Pollen and seed transmission of cucumber green mottle mosaic virus in cucumber. Plant Pathol 63:72–77CrossRefGoogle Scholar
  94. Lotos L, Olmos A, Orfanidou C, Efthimiou K, Avgelis A, Katis NI, Maliogka VI (2017) Insights into the etiology of polerovirus-induced pepper yellows disease. Phytopathology 107:1567–1576PubMedCrossRefGoogle Scholar
  95. Lozano G, Moriones E, Navas-Castillo J (2004) First report of sweet pepper (Capsicum annuum) as a natural host plant for tomato chlorosis virus. Plant Dis 88:224PubMedCrossRefGoogle Scholar
  96. Luis-Arteaga M, Rodriguez-Cerezo E, Fraile A, Saez E, Garcia-Arenal F (1996) Different tomato bushy stunt virus strains that cause disease outbreaks in solanaceous crops in Spain. Phytopathology 86:533–542Google Scholar
  97. Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, Elad N, Tam Y, Sela N, Abu-Ras A, Ezra N, Haberman A, Yitzhak L, Lachman O, Dombrovsky A (2017) A new Israeli tobamovirus isolate infects tomato plants harboring tm-22 resistance genes. PLoS One 12:e0170429PubMedPubMedCentralCrossRefGoogle Scholar
  98. Maisonneuve JC, Marrec C (1999) The potential of Chrysoperla lucasina for IPM programmes in greenhouses. In: van Lenteren JC (ed) OILB/SROP Bulletin, IOBC/WPRS Working Group ‘Integrated Control in Glasshouses’. Proceedings of the Meeting at Brest, France, 25–29 May, 1999, vol 22, pp 165–168Google Scholar
  99. Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR (2011) Emerging problems of Tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Dis 96:468–479CrossRefGoogle Scholar
  100. Marchoux G, Douine L, Quiot JB (1976) Differential thermal behavior of various strains of cucumber mosaic virus. Hypothesis of a pleiotropic mechanism connecting various properties. C R Hebdomadaires Seances l’Académie Sci 283:1601–1604Google Scholar
  101. Marchoux G, Gognalons P, Gébré-Sélassié K (2008) Virus des solanacées Du génome viral à la protection des cultures. Editions Quae, Versailles. 858 pGoogle Scholar
  102. Menzel W, Knierim D, Winter S, Hamacher J, Heupel M (2019) First report of tomato brown rugose fruit virus infecting tomato in Germany. New Dis Rep 39:1CrossRefGoogle Scholar
  103. Mink GI (1993) Pollen and seed transmitted viruses and viroids. Annu Rev Phytopathol 31:375–402PubMedCrossRefGoogle Scholar
  104. Mochizuki T, Ohki ST (2012) Cucumber mosaic virus: viral genes as virulence determinants. Mol Plant Pathol 13:217–225PubMedCrossRefGoogle Scholar
  105. Moreno-Perez MG, Pagan I, Aragon-Caballero L, Caceres F, Fraile A, Garcia-Arenal F (2014) Ecological and genetic determinants of Pepino mosaic virus emergence. J Virol 88:3359–3368PubMedPubMedCentralCrossRefGoogle Scholar
  106. Morilla G, Janssen D, Garcia-Andres S, Moriones E, Cuadrado IM, Bejarano ER (2005) Pepper (Capsicum annuum) is a dead-end host for tomato yellow leaf curl virus. Phytopathology 95:1089–1097PubMedCrossRefGoogle Scholar
  107. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134PubMedCrossRefGoogle Scholar
  108. Moriones E, Navas-Castillo J, Díaz-Pendón JA (2011) Emergence of begomovirus diseases. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Caister Acad, Norfolk, pp 301–320Google Scholar
  109. Moriones E, Praveen S, Chakraborty S (2017) Tomato leaf curl New Delhi virus: an emerging virus complex threatening vegetable and fiber crops. Viruses 9:264PubMedCentralCrossRefPubMedGoogle Scholar
  110. Moury B (2010) A new lineage sheds light on the evolutionary history of potato virus Y. Mol Plant Pathol 11:161–168PubMedCrossRefGoogle Scholar
  111. Moury B, Verdin E (2012) Viruses of pepper crops in the Mediterranean basin: a remarkable stasis. Adv Virus Res 84:127–162PubMedCrossRefGoogle Scholar
  112. Moury B, Palloix A, Gébré-Sélassié K, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94:45–52CrossRefGoogle Scholar
  113. Murakami R, Nakashima N, Hinomoto N, Kawano S, Toyosato T (2011) The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus). Arch Virol 156:921–923PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nagaraju R, Reddy HR (1980) Occurrence and distribution of bell pepper viruses around Bangalore. Curr Res Univ Agric Sci Bangalore 10(9/10):155–156Google Scholar
  115. Nagata T, Alves DMT, Inoue-Nagata AK, Tian TY, Kitajima EW, Cardoso JE, de Avila AC (2005) A novel melon flexivirus transmitted by whitefly. Arch Virol 150:379–387PubMedCrossRefGoogle Scholar
  116. Navas-Castillo J, Fiallo-Olivé E, Sanchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248PubMedCrossRefGoogle Scholar
  117. Palloix A, Daubèze AM, Lefebvre V, Caranta C, Moury B, Pflieger S, Gébré-Sélassié K, Marchoux G (1997) Construction de systemes de resistance aux maladies adaptes aux conditions de cultures chez le piment. CR Acad d’Agriculture Fr 83:87–98Google Scholar
  118. Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199PubMedCrossRefGoogle Scholar
  119. Palukaitis P, Garcıa-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323PubMedCrossRefGoogle Scholar
  120. Palukaitis P, Roossinck MJ, Dietzgen RG, Francki RIB (1992) Cucumber mosaic virus. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research, pp 281–348Google Scholar
  121. Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236CrossRefGoogle Scholar
  122. Parrella G, Gognalons P, Gébré-Sélassié K, Vovlas C, Marchoux G (2003) An update of the host range of tomato spotted wilt virus. J Plant Pathol 85:227–264Google Scholar
  123. Parrella G, Greco B, Troiano E (2016) Severe symptoms of mosaic and necrosis in bell pepper associated with Parietaria mottle virus in Italy. Plant Dis 100:1514CrossRefGoogle Scholar
  124. Pennazio S, Roggero P, Conti M (2001) A history of plant virology. Cross protection. New Microbiol 24:99–114PubMedGoogle Scholar
  125. Pernezny KL, Roberts PD, Murphy JF, Goldberg NP (2003) Compendium of pepper diseases. American Phytopathology Society Press, St PaulGoogle Scholar
  126. Polston JE, Cohen L, Sherwood TA, Ben-Joseph R, Lapidot M (2006) Capsicum species: symptomless hosts and reservoirs of tomato yellow leaf curl virus. Phytopathology 96:447–452PubMedCrossRefGoogle Scholar
  127. Pospieszny H, Budziszewska M, Hasiów-Jaroszewska B, Obrępalska-Stęplowska A, Borodynko N (2010) Biological and molecular characterization of polish isolates of tomato torrado virus. J Phytopathol 158:56–62CrossRefGoogle Scholar
  128. Prins M, Goldbach R (1998) The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35PubMedCrossRefGoogle Scholar
  129. Quinones M, Fonseca D, Martinez Y, Accotto G (2002) First report of tomato yellow leaf curl virus infecting pepper plants in Cuba. Plant Dis 86:73–73PubMedCrossRefGoogle Scholar
  130. Quiot J-B, Devergne J-C, Marchoux G, Cardin L, Douine L (1979) Ecologie et epidemiologie du virus de la mosaıque du concombre dans le sud-est de la France. VI. Conservation de deux types de populations sauvages dans les plantes sauvages. Ann Phytopathologie 11:349–357Google Scholar
  131. Raccah B (1986) Non-persistent viruses: epidemiology and control. Adv Virus Res 31:387–429PubMedCrossRefGoogle Scholar
  132. Rast ATB, Stijger CCMM (1987) Disinfection of pepper seed infected with different strains of capsicum mosaic virus by trisodium phosphate and dry heat treatment. Plant Pathol 36:583–588CrossRefGoogle Scholar
  133. Reina J, Morilla G, Bejarano ER, Rodríguez MD, Janssen D (1999) First report of Capsicum annuum plants infected by tomato yellow leaf curl virus. Plant Dis 83:1176PubMedCrossRefGoogle Scholar
  134. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (2000) Virus taxonomy: classification and nomenclature of viruses. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) International committee on taxonomy of viruses, seventh report of the international committee on taxonomy of viruses. Academic, San Diego, p 1162Google Scholar
  135. Reingold V, Lachman O, Blaosov E, Dombrovsky A (2015) Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol 64:245–255CrossRefGoogle Scholar
  136. Ribeiro SG, Ambrozevicius LP, de Avila AC, Bezerra IC, Calegario RF, Fernandes JJ, Lima MF, de Mello RN, Rocha H, Zerbini FM (2003) Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch Virol 148:281–295PubMedCrossRefGoogle Scholar
  137. Rodríguez-Lopez MJ, Garzo E, Bonani JP, Fereres A, Fernandez-Muñoz R, Moriones E (2011) Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of tomato yellow leaf curl virus. Phytopathology 101:1191–1201PubMedCrossRefGoogle Scholar
  138. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307PubMedPubMedCentralCrossRefGoogle Scholar
  139. Roossinck MJ, Zhang L, Hellwald K-H (1999) Rearrangements in the 59 nontranslated region and phylogenetic analyzes of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J Virol 73:6752–6758PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ruffel S, Dussault M-H, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075PubMedCrossRefGoogle Scholar
  141. Rusli ES, Hidayat SH, Suseno R, Tjahjono B (1999) Virus Gemini asal cabai: kisaran inang dan cara penularan. Bulletin HPT 11:26–31Google Scholar
  142. Saez C, Martinez C, Ferriol M, Manzano S, Velasco L, Jamilena M, Lopez C, Pico B (2016) Resistance to tomato leaf curl New Delhi virus in Cucurbita spp. Ann Appl Biol 169:91–105CrossRefGoogle Scholar
  143. Saez C, Esteras C, Martinez C, Ferriol M, Hillon NPS, Lopez C, Pico B (2017) Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep 36:1571–1584PubMedCrossRefGoogle Scholar
  144. Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J, Maxwell D, Gilbertson RL (2002) Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies and identification of reservoir hosts. Phytopathology 92:487–496PubMedCrossRefGoogle Scholar
  145. Salem N, Mansour A, Ciuffo M, Falk BW, Turina M (2016) A new tobamovirus infecting tomato crops in Jordan. Arch Virol 161:503–506PubMedCrossRefGoogle Scholar
  146. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shah H, Yasmin T, Fahim M, Hameed S, Haque MI (2009) Prevalence, occurrence and distribution of chilli veinal mottle virus in Pakistan. Pak J Bot 41:955–965Google Scholar
  148. Sivaprasad Y, Garrido P, Mendez K, Garrido A, Ramos L (2015) First report of potato yellowing virus infecting pepper in Ecuador. J Plant Pathol 97:S73Google Scholar
  149. Soler S, Diez MJ, Rosello S, Nuez F (1999) Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Can J Plant Pathol 21:317–325CrossRefGoogle Scholar
  150. Stenger DC, Duffus JE, Villalon B (1990) Biological and genomic properties of a geminivirus isolated from pepper. Phytopathology 80:704–709CrossRefGoogle Scholar
  151. Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the SW-5 locus for tomato spotted wilt virus-resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456PubMedCrossRefGoogle Scholar
  152. Sufrin-Ringwald T, Lapidot M (2011) Characterization of a synergistic interaction between two cucurbit-infecting begomoviruses: squash leaf curl virus and watermelon chlorotic stunt virus. Phytopathology 101:281–289PubMedCrossRefGoogle Scholar
  153. Tahir M, Haider MS (2005) First report of tomato leaf curl New Delhi virus infecting bitter gourd in Pakistan. Plant Pathol 54:807CrossRefGoogle Scholar
  154. Thottappilly G (1992) Plant virus diseases of importance to African agriculture. J Phytopathol 134:265–268CrossRefGoogle Scholar
  155. Timmerman EL, D’Arcy CJ, Splittstroesser WE (1985) Beet western yellows virus in Illinois vegetable crops and weeds. Plant Dis 69:933Google Scholar
  156. Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681CrossRefGoogle Scholar
  157. Trisno J, Hidayat SH, Habazar T, Manti I, Jamsari (2009) Detection and sequence diversity of begomovirus associated with yellow leaf curl disease of pepper (Capsicum annuum ) in West Sumatra, Indonesia. Microbiol Indones 3:56–61CrossRefGoogle Scholar
  158. Tsuda S, Kirita M, Watanabe Y (1998) Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol Plant-Microbe Interact 1:327–331CrossRefGoogle Scholar
  159. Turina M, Kormelink R, Resende RO (2016) Resistance to Tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54:347–371PubMedCrossRefGoogle Scholar
  160. Tzanetakis IE, Martin RR, Wintermantel W (2013) Epidemiology of criniviruses, an emerging problem in world agriculture. Front Microbiol 4:119. (15 pp)PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vargas JA, Hammond R, Hernandez E, Barboza N, Mora F, Ramırez P (2011) First report of tomato chlorosis virus infecting sweet pepper in Costa Rica. Plant Dis 95:1482PubMedCrossRefGoogle Scholar
  162. Verbeek M, van Bekkum PJ, Dullemans AM, van der Vlugt RAA (2014) Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. Virus Res 186:55–60PubMedCrossRefGoogle Scholar
  163. Villanueva F, Castillo P, Font MI, Alfaro-Fernandez A, Moriones E, Navas-Castillo J (2013) First report of pepper vein yellows virus infecting sweet pepper in Spain. Plant Dis 97:1261PubMedCrossRefGoogle Scholar
  164. van der Vlugt RAA, Verbeek M, Dullemans AM, Wintermantel WM, Cuellar WJ, Fox A, Thompson JR (2015) Torradoviruses. Annu Rev Phytopathol 53:485–512PubMedCrossRefGoogle Scholar
  165. Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC, McAvoy E, Turechek WW, Marshall SH, Tantiwanich Y, McGrath MT, Daughtrey ML, Adkins S (2014) Emergence of groundnut ringspot virus and tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology 105:388–398CrossRefGoogle Scholar
  166. Wintermantel WM (2004) Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. APSnet Feature StoryGoogle Scholar
  167. Wintermantel WM (2010) Transmission efficiency and epidemiology of criniviruses. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Netherlands, pp 319–331Google Scholar
  168. Wintermantel WM, Hladky LL (2013) Complete genome sequence and biological characterization of Moroccan pepper virus (MPV) and reclassification of lettuce necrotic stunt virus as MPV. Phytopathology 103:501–508PubMedCrossRefGoogle Scholar
  169. Wisler GC, Li RH, Liu HY, Lowry DS, Duffus JE (1998) Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bipartite Closterovirus of tomato. Phytopathology 88:402–409PubMedCrossRefGoogle Scholar
  170. Yoon JY, Green SK, Tschanz AT, Tsou SCS, Chang LC (1989) Pepper improvement for the tropics, problems and the AVRDC approach. Asian Vegetable Research and Development Center, tomato and pepper production in the tropics. AVRDC, Shanhua, pp 86–98Google Scholar
  171. Zaidi SS-A, Martin DP, Amin I, Farooq M, Mansoor S (2016) Tomato leaf curl New Delhi virus; a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Mol Plant Pathol 18:901–911PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhou C, Zhou Y (2012) Strategies for viral cross protection in plants. Methods Mol Biol 894:69–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”MálagaSpain
  2. 2.Pathologie Végétale, INRAEMontfavetFrance

Personalised recommendations