Stinkbugs: Multisensory Communication with Chemical and Vibratory Signals Transmitted Through Different Media

  • Andrej ČoklEmail author
  • Maria Carolina Blassioli-Moraes
  • Raul Alberto Laumann
  • Alenka Žunič
  • Miguel Borges
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 6)


Extensive field research of stinkbug (Pentatomidae: Heteroptera) biology, ecology, feeding habits and communication revealed that reproductive behaviour is a complex process that needs integrative studies in the field and laboratory at different levels. The general model of group mating behaviour includes long-range communication in the field with airborne chemical signals that gather mates on the common substrate, and then the exchange of information during calling and courtship phases by plant-borne and airborne vibratory, chemical, contact mechanical and visual signals. This basic concept of multimodal communication has been confirmed with few exceptions in more than 35 stinkbug species. Privacy in stinkbug communication with chemical and vibratory signals is achieved by the use of unimodal or multicomponent signals. Male pheromone, for example, triggers female calling and the latter signals, for some species, increase the male sex pheromone production. In the present chapter, the authors focus special attention on the stinkbug sensory system that enables detecting and processing of chemical and vibratory signals transmitted through the air and different substrates. The advances of stinkbug chemical communication and its chemoreception are presented and discussed with new examples from the literature. Recent studies of airborne and substrate-borne vibratory signals produced by body and wing tremulation increased the number of mechanoreceptors involved in communication. Integration of information takes place in common neuropiles. In summary, an update on the advances in multimodal stinkbug communication is presented and future studies are proposed, mainly based on mutual interaction of multimodal signals and their recognition in both field and laboratory.



The authors are grateful to colleagues and friends of the Department of Organisms and Ecosystems Research of the National Institute of Biology (Ljubljana, Slovenia) and of Laboratório de Semioquímicos, EMBRAPA Recursos Genéticos e Biotecnologia (Brasilia, Brazil) who directly and indirectly inspired and contributed to our curiosity-driven investigations of insect chemical and vibratory communication. Thanks go to Peggy S.M. Hill for critical reading of the manuscript and helpful suggestions. The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0255), from the Fundação de Apoio do Distrito Federal (FAP-DF 193.000.978/2015) and from CNPq and Slovenian Research Agency financed bilateral projects (BI-BR/12-14/002 and BI/BR10-12/003).


  1. Aldrich JR (1995) Chemical communication in the true bugs and parasitoid exploitation. In: Cardé RT, Bell WJ (eds) Chemical ecology of insects II. Chapman & Hall, New York, pp 318–363CrossRefGoogle Scholar
  2. Aldrich JR, Numata H, Borges M, Bin F, Waite GK, Lusby WR (1993) Artifacts and pheromone blends from Nezara spp. and other stink bugs (Heteroptera: Pentatomidae). Z Naturfors (Ser C) 48:73–79CrossRefGoogle Scholar
  3. Aldrich JR, Khrimian A, Camp MJ (2007) Methyl 2,4,6-decatrienoates attract stink bugs (Hemiptera: Heteroptera: Pentatomidae) and tachinid parasitoids. J Chem Ecol 33:801–815PubMedCrossRefGoogle Scholar
  4. Amon T (1990) Electrical brain stimulation elicits singing in the bug Nezara viridula. Naturwissenschaften 77:291–292CrossRefGoogle Scholar
  5. Bagwell GJ, Čokl A, Millar JG (2008) Characterization and comparison of the substrate-borne vibrational signals of Chlorochroa uhleri, C. ligata and C. sayi. Ann Entomol Soc Am 101:235–246CrossRefGoogle Scholar
  6. Barth FG (1998) The vibrational sense in spiders. In: Popper RR, Fay AN (eds) Handbook of auditory research. Comparative hearing in insects. Springer, New York, pp 228–278CrossRefGoogle Scholar
  7. Barth FG (2002) A spider’s world: senses and behavior. Springer, BerlinCrossRefGoogle Scholar
  8. Blassioli-Moraes MC, Laumann RA, Čokl A, Borges M (2005) Vibratory signals of four Neotropical stink bug species. Physiol Entomol 30:175–118CrossRefGoogle Scholar
  9. Blassioli-Moraes MC, Laumann RA, Oliveira MWM, Woodcock CM, Mayon P, Hooper A, Pickett JA, Birkett MA, Borges M (2012) Sex pheromone communication in two sympatric Neotropical stink bug species Chinavia ubica and Chinavia impicticornis. J Chem Ecol 38:836–845PubMedCrossRefPubMedCentralGoogle Scholar
  10. Blassioli-Moraes MC, Borges M, Laumann RA (2013) Chemical ecology of insect parasitoids. In: Wajnberg E, Colazza S (eds) The application of chemical cues in arthropod pest management for arable crops. Wiley, New York, NY, pp 225–244Google Scholar
  11. Blassioli-Moraes MC, Magalhaes DM, Čokl A, Laumann RA, Da Silva JP et al (2014) Vibrational communication and mating behaviour of Dichelops melacanthus (Hemiptera: Pentatomidae) recorded from the loudspeaker membrane and plants. Physiol Entomol 39:1–11CrossRefGoogle Scholar
  12. Blomquist GJ, Bagnéres AG (2010) Insect hydrocarbons. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Borges M (1995) Attractant compounds of the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae). An Soc Entomol Bras 24:215–225Google Scholar
  14. Borges M, Aldrich JR (1992) Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia 48:893–896CrossRefGoogle Scholar
  15. Borges M, Blassioli-Moraes MC (2017) The semiochemistry of Pentatomidae in stinkbugs. In: Čokl A, Borges M (eds) Biorational control based on communication processes. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 95–124CrossRefGoogle Scholar
  16. Borges M, Jepson PC, Howse PE (1987) Long-range mate location and close range courtship behavior of the green stink bug, Nezara viridula and its mediation by sex pheromones. Entomol Exp Appl 44:205–212CrossRefGoogle Scholar
  17. Borges M, Schmidt FGV, Sujii ER, Medeiros MA, Mori K, Zarbin PHG, Ferreira TB (1998) Field responses of stink bugs to the natural and synthetic pheromone of the Neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae). Physiol Entomol 23:202–207CrossRefGoogle Scholar
  18. Borges M, Zarbin PGH, Ferreira JTB, da Costa MLM (1999) Pheromone sharing: blends based on the same compounds for Euschistus heros and Piezodorus guildinii. J Chem Ecol 25:629–634CrossRefGoogle Scholar
  19. Borges M, Moraes MCM, Peixoto MF, Pires CSS, Sujii ER, Laumann RA (2011) Monitoring the Neotropical brown stink bug Euschistus heros (F.) (Hemiptera: Pentatomidae) with pheromone-baited traps in soybean fields. J Appl Entomol 135:68–80CrossRefGoogle Scholar
  20. Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577CrossRefGoogle Scholar
  21. Boyan GS (1993) Another look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39:187–200CrossRefGoogle Scholar
  22. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, SunderlandGoogle Scholar
  23. Brézot P, Malosse C, Mori K, Renou M (1994) Bisabolene epoxides in sex pheromone in Nezara viridula (L.) (Heteroptera: Pentatomidae): role of cis isomer and relation to specificity of pheromone. J Chem Ecol 20:3133–3147PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brézot P, Tauban D, Renou M (1997) Sense organs on the antennal flagellum of the green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae): sensilla types and numerical growth during the post-embryonic development. Int J Insect Morphol Embryol 25:427–441CrossRefGoogle Scholar
  25. Capone TA (1995) Mutual preference for large mates in green stink bugs, Acrosternum hilare (Hemiptera: Pentatomidae). Anim Behav 49(5):1335–1344CrossRefGoogle Scholar
  26. Cardé RT (2016) Moth navigation along pheromone plumes. In: Allison JD, Cardé RT (eds) Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, CA, pp 173–189Google Scholar
  27. Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leaf miner–parasitoid system. Biol Control 11:147–153CrossRefGoogle Scholar
  28. Celani A, Villernaux E, Vergassola M (2014) Odor landscapes in turbulent environments. Phys Rev X 4:041015CrossRefGoogle Scholar
  29. Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789CrossRefGoogle Scholar
  30. Cocroft RB, Rodríguez RL, Hunt RE (2008) Host shifts, the evolution of communication and speciation in the Enchenopa binotata species complex of treehoppers. In: Tilmon KJ (ed) Speciation, specialization and radiation: the evolutionary biology of insect and plant interactions. University of California Press, Berkeley, CA, pp 88–100Google Scholar
  31. Čokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera, Pentatomidae). J Comp Physiol 150:261–269CrossRefGoogle Scholar
  32. Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124PubMedCrossRefGoogle Scholar
  33. Čokl A, Amon T (1980) Vibratory interneurons in the central nervous system of Nezara viridula L. (Pentatomidae, Heteroptera). J Comp Physiol 139:87–95CrossRefGoogle Scholar
  34. Čokl A, Borges M (2017) Stink bugs: biorational control based on communication processes. CRC Press, Taylor & Francis Group, Boca Raton, FLCrossRefGoogle Scholar
  35. Čokl A, Virant-Doberlet M, McDowell A (1999) Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav 58:1277–1283PubMedCrossRefGoogle Scholar
  36. Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by the southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205CrossRefGoogle Scholar
  37. Čokl A, Prešern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380CrossRefGoogle Scholar
  38. Čokl A, Zorović M, Žunič A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L. Heteroptera: Pentatomidae. J Exp Biol 208:1481–1488PubMedCrossRefPubMedCentralGoogle Scholar
  39. Čokl A, Nardi C, Bento JMS, Hirose E, Panizzi AR (2006) Transmission of stridulatory signals of the burrower bugs, Scaptocoris castanea and Scaptocoris carvalhoi (Heteroptera: Cydnidae) through the soil and soybean. Physiol Entomol 31:371–381CrossRefGoogle Scholar
  40. Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54CrossRefGoogle Scholar
  41. Čokl A, Zorović M, Žunič A, Stritih N, Virant-Doberlet M (2014) Communication through plants in a narrow frequency window. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 171–195Google Scholar
  42. Čokl A, Laumann RA, Žunič A, Blassioli-Moraes MC, Virant-Doberlet M, Borges M (2015) Interference of overlapping insect vibratory communication signals: a Euschistus heros model. PLoS One 10(6):1–16CrossRefGoogle Scholar
  43. Čokl A, Laumann RA, Stritih N (2017a) Substrate-borne vibratory communication. In: Čokl A, Borges M (eds) Stink bugs: biorational control based on communication processes. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 125–164CrossRefGoogle Scholar
  44. Čokl A, Moreira Dias A, Blassioli-Moraes MC, Borges M, Laumann RA (2017b) Rivalry between stink bug females in a vibrational communication network. J Insect Behav 30(6):741–758CrossRefGoogle Scholar
  45. Colazza S, Salerno G, Wajnberg E (1999) Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoids Trissolcus basalis (Hymenoptera: Scelionidae). Biol Control 16(3):310–317CrossRefGoogle Scholar
  46. Colazza S, Aquila G, De Pasquale C, Peri E, Millar JG (2007) The egg parasitoids Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J Chem Ecol 33:1405–1420PubMedCrossRefGoogle Scholar
  47. Colazza S, Lo Bue M, Lo Giudice D, Peri E (2009) The response of Trissolcus basalis to footprint contact kairomons from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96:975–981PubMedCrossRefGoogle Scholar
  48. Conti E, Salerno G, Bin F, Vinson SB (2004) The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomide bugs. Biol Control 29:435–444CrossRefGoogle Scholar
  49. De Groot M, Čokl A, Virant-Doberlet M (2010) Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in Nezara viridula (L.). J Exp Biol 213:3213–3222PubMedCrossRefGoogle Scholar
  50. De Pasquale C, Guarino S, Peri E, Alonzo G, Colazza S (2007) Investigation of cuticular hydrocarbons from Bagrada hilaris genders by SPME/GC-MS C. Anal Bioanal Chem 389:1259–1265PubMedCrossRefPubMedCentralGoogle Scholar
  51. Eliyahu D, Ceballos RA, Saeidi V, Becerra JX (2012) Synergy versus potency in the defensive secretions from nymphs of two Pentatomorphan families (Hemiptera: Coreidae and Pentatomidae). J Chem Ecol 38:1358–1365PubMedPubMedCentralCrossRefGoogle Scholar
  52. Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153CrossRefGoogle Scholar
  53. Endo N, Wada T, Nishiba Y, Sasaki R (2006) Interspecific pheromone cross-attraction among soybean bugs (Heteroptera): Does Piezodorus hybneri (Pentatomidae) utilize the pheromone of Riptortus clavatus (Alydidae) as a kairomone? J Chem Ecol 32:1605–1612PubMedCrossRefPubMedCentralGoogle Scholar
  54. Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2014) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:1–10. CrossRefGoogle Scholar
  55. Farias LR, Schmmelpfeng PHC, Togawa RC, Costa MMC, Grynberg P, Martins NF, Blassioli-Moraes MC, Laumann RA, Báo SN, Paula PD (2015) Transcriptome-based identification of highly similar odorant-binding proteins among Neotropical stink bugs and their egg parasitoid. PLoS One. PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J Exp Biol 209:2377–2383PubMedCrossRefPubMedCentralGoogle Scholar
  57. Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654CrossRefGoogle Scholar
  58. Gnatzy W, Heusslein R (1986) Digger wasp against crickets. Naturwissenschaften 73(4):212–215CrossRefGoogle Scholar
  59. Gogala M, Razpotnik R (1974) A method of oscillographic sonagraphy for bio-acoustic research. Biol Vestnik 22:209–216Google Scholar
  60. Guarino S, De Pasquale C, Peri E, Alonzo G, Colazza S (2008) Role of volatile and contact pheromones in the mating behavior of Bagrada hilaris (Heteroptera: Pentatomidae). Eur J Entomol 105:613–617CrossRefGoogle Scholar
  61. Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214CrossRefGoogle Scholar
  62. Helms AJ, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci U S A 110:199–204PubMedCrossRefGoogle Scholar
  63. Henry CS, Wells MLM (2004) Adaptation or random change? The evolutionary response of songs to substrate properties in lacewings (Neuroptera: Chrysopidae: Chrysoperla). Anim Behav 68:879–895CrossRefGoogle Scholar
  64. Higham JP, Hebets EA (2013) An introduction to multimodal communication. Behav Ecol Sociobiol 67:1381–1388CrossRefGoogle Scholar
  65. Hironaka M, Nomakuchi S, Filippi L, Tojo S, Horiguchi H, Hariyama T (2003) The directional homing behaviour of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Cydnidae), under different photic conditions. Zool Sci 20(4):423–428PubMedCrossRefPubMedCentralGoogle Scholar
  66. Jeram S (1996) Structure and function of Johnston’s organ in the bug species Nezara viridula (L.). Dissertation Thesis, University of Ljubljana, SloveniaGoogle Scholar
  67. Jeram S, Pabst AM (1996) Johnston’s organ and central organ in Nezara viridula (L.) (Heteroptera, Pentatomidae). Tissue Cell 28:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  68. Joyce A, White WH, Medina RF (2014) Host plants impact courtship vibration transmission and mating success of a parasitoid wasp, Cotesia flavipes (Hymenoptera: Braconidae). Evol Ecol 28:361–372CrossRefGoogle Scholar
  69. Kaissling K-E (2014) Pheromone reception in insects: the example of silk moths. In: Mucignat-Caretta C (ed) Neurobiology of chemical communications. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 99–146. CrossRefGoogle Scholar
  70. Kavčič A, Čokl A, Laumann RA, Moraes MCB, Borges M (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Eushistus heros. PLoS One 8(2):1–10CrossRefGoogle Scholar
  71. Khadka KK, Shek J, Hoffman J, Vuhin R, Foellmer M (2012) Longer antennae for Romeo: assessing effect of antennae length on courtship and mating success in male crickets, Acheta domesticus (Orthoptera, Gryllidae). J Insect Behav 25:96–103CrossRefGoogle Scholar
  72. Kiritani K, Hokyo H, Yukawa J (1963) Coexistence of the two related stink bugs Nezara viridula and Nezara antennata under natural conditions. Res Popul Ecol 5:11–22CrossRefGoogle Scholar
  73. Kon M, Oe A, Numata H, Hidaka T (1988) Comparison of the mating behaviour between the sympatric species Nezara antennata and N. viridula (Heteroptera: Pentatomidae) with special reference to sound emission. J Ethol 6:91–98CrossRefGoogle Scholar
  74. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307PubMedCrossRefGoogle Scholar
  75. Kristoffersen L, Hansson BS, Anderbrandt O, Larsson MC (2008) Aglomerular hemipteran antennal lobes–basic neuroanatomy of a small nose. Chem Senses 33:776–778Google Scholar
  76. Kuštor V (1989) Activity of muscles of the vibration producing organ of the bug Nezara viridula. MSc thesis, University of Ljubljana, Ljubljana, SloveniaGoogle Scholar
  77. Lagõa ACG (2016) Respostas comportamentais dos parasitoides de ovos Telenomus podisi e Trissolcus basalis (Hymenoptera: Platygastridae) a rastros químicos de percevejos (Hemiptera: Pentatomidae). MSc Thesis, Universidade de Brasília, BrazilGoogle Scholar
  78. Landolt PJ, Philips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391PubMedCrossRefGoogle Scholar
  79. Laumann RA, Aquino MF, Moraes MCB, Pareja M, Borges M (2009) Response of egg parasitoids Trissolcus basalis and Telenomus podisi to compounds from defensive secretions of stink bugs. J Chem Ecol 35:8–19PubMedCrossRefGoogle Scholar
  80. Laumann RA, Moraes MCB, Khrimian A, Borges M (2011) Field capture of Thyanta perditor with pheromone-baited traps. Pesq Agropec Bras 46:113–119CrossRefGoogle Scholar
  81. Laumann RA, Kavčič A, Moraes MCB, Borges M, Čokl A (2013) Reproductive behaviour and vibratory communication of the Neotropical predatory stink bug Podisus nigrispinus. Physiol Entomol 378:71–80CrossRefGoogle Scholar
  82. Laumann RA, Čokl A, Blassioli-Moraes MC, Borges M (2016) Vibratory communication and its relevance to reproductive isolation in two sympatric species (Hemiptera: Pentatomidae: Pentatominae). J Insect Behav 29:643–665CrossRefGoogle Scholar
  83. Lee K-C, Kang C-H, Lee DW, Lee SM, Park C-G, Choo HY (2002) Seasonal occurrence trends of hemipteran bug pests monitored by mercury light and aggregation pheromone traps in sweet persimmon orchards. Korean J Appl Entomol 41:233–238CrossRefGoogle Scholar
  84. Lo Giudice D, Riedel M, Rostás M, Peri E, Colazza S (2011) Host sex discrimination by an egg parasitoid on Brassica leaves. J Chem Ecol 37:622–628PubMedCrossRefPubMedCentralGoogle Scholar
  85. Loundon C (1999) The biochemical design of an insect antenna as an odor capture device. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, London, pp 609–630Google Scholar
  86. Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 125–145Google Scholar
  87. McBrien HL, Čokl A, Millar JG (2002) Comparison of substrate-borne vibrational signals of two consperse stink bug species Thyanta pallidovirens and T. custator accera (Heteroptera: Pentatomidae). J Insect Behav 15(6):715–738CrossRefGoogle Scholar
  88. McIver SB (1982) Sensilla of mosquitoes (Diptera: Culicidae). J Med Entomol 19:489–535PubMedCrossRefPubMedCentralGoogle Scholar
  89. McNett GD, Cocroft RB (2008) Host shifts favour vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656CrossRefGoogle Scholar
  90. McPherson JE, McPherson RM (2000) Stink bugs of economic importance in America North of Mexico. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  91. Michel K, Amon T, Čokl A (1983) The morphology of the leg scolopidial organs in Nezara viridula (L.) (Heteroptera, Pentatomidae). Rev Can Biol Exp 42:130–150Google Scholar
  92. Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332CrossRefGoogle Scholar
  93. Miklas N, Čokl A, Renou M, Virant-Doberlet M (2003a) Variability of vibratory signals and mate choice selectivity in the southern green stink bug. Behav Process 61:131–142CrossRefGoogle Scholar
  94. Miklas N, Lasnier T, Renou M (2003b) Male bugs modulate pheromone emission in response to vibratory signals of the conspecifics. J Chem Ecol 29(3):561–574PubMedCrossRefPubMedCentralGoogle Scholar
  95. Moraes MCB, Pareja M, Laumann RA, Borges M (2008a) The chemical volatiles (semiochemicals) produced by Neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop Entomol 37:489–505PubMedCrossRefPubMedCentralGoogle Scholar
  96. Moraes MCB, Borges M, Pareja M, Vieira HG, de Souza Sereno FT, Laumann RA (2008b) Food and humidity affect sex pheromone ratios in the stink bug, Euschistus heros. Physiol Entomol 33:43–50CrossRefGoogle Scholar
  97. Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects: Unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366(3):549–572. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nosil P (2012) Ecological speciation. Oxford University Press, New YorkCrossRefGoogle Scholar
  99. Panizzi AR, Lucini T (2017) Host plant-stink bug relationships. In: Čokl A, Borges M (eds) Biorational control based on communication processes. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 31–85CrossRefGoogle Scholar
  100. Panizzi AR, McPherson JE, James DG, Javahery M, McPherson RM (2000) Stink bugs (Pentatomidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, FL, pp 421–474Google Scholar
  101. Partan S, Marler P (1999) Communication goes multimodal. Science 283(5406):1272–1273PubMedCrossRefPubMedCentralGoogle Scholar
  102. Partan SR, Marler P (2005) Issues in the classification of multisensory communication signals. Am Nat 166:231–245PubMedCrossRefPubMedCentralGoogle Scholar
  103. Pavis C, Malosse PH (1986) Mise en evidence d’un attractif sexuel produit par les males de Nezara viridula (L.) (Heteroptera: Pentatomidae). C R Acad Sci Series III 7:272–276Google Scholar
  104. Pavlovčič P, Čokl A (2001) Songs of Holcostethus strictus (Fabricius): A different repertoire among land bugs (Heteroptera: Pentatomidae). Behav Process 53:65–73CrossRefGoogle Scholar
  105. Pekar S, Hruškova M (2006) Coreus marginatus (Heteroptera: Coreidae) as a natural enemy of Rumex obtusifolius (Polygonaceae). Acta Oecol 28(3):281–287Google Scholar
  106. Peri E, Frati F, Salerno G, Conti E, Colazza S (2013) Host chemical footprints induce host sex discrimination ability in egg parasitoids. PLoS One 8:e79054PubMedPubMedCentralCrossRefGoogle Scholar
  107. Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Central Eur J Biol 3(2):189–197Google Scholar
  108. Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomide bugs (Heteroptera: Pentatomidae). J Roy Soc Interface 9:1898–1907CrossRefGoogle Scholar
  109. Polajnar J, Kavčič A, Žunič A, Čokl A (2013) Palomena prasina (Hemiptera: Pentatomidae) vibratory signals and their tuning with plant substrates. Central Eur J Biol 8(7):670–680Google Scholar
  110. Rani UP, Madhavendra SS (2005) External morphology of antennal and rostral sensilla in four hemipteran insects and their possible role in host plant selection. Int J Trop Insect Sc 25:198–207CrossRefGoogle Scholar
  111. Rolston LH, McDonald FJD (1979) Keys and diagnoses for the families of Western Hemisphere Pentatomoidea, subfamilies of Pentatomidae and tribes of Pentatominae (Hemiptera). J NY Entomol Soc 87:189–207Google Scholar
  112. Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931PubMedCrossRefGoogle Scholar
  113. Schaefer C (1975) Heteropteran trichobotria (Hemiptera: Heteroptera). Int J Insect Morphol Embryol 4(3):193–238CrossRefGoogle Scholar
  114. Shestakov LS (2015) A comparative analysis of vibrational signals in 16 sympatric species (Pentatomidae, Heteroptera). Entomol Rev 95(3):310–325CrossRefGoogle Scholar
  115. Silva CCA, Blassioli-Moraes MC, Falcão R, Solino LF, Laumann RA, Silva JP, Borges M (2010) Morphology, distribution and abundance of antennal sensilla in three stink bug species (Hemiptera: Pentatomidae). Micron 41:289–300PubMedCrossRefGoogle Scholar
  116. Silva CCA, Laumann RA, Ferreira JBC, Blassioli-Moraes MC, Borges M, Čokl A (2012) Reproductive biology, mating behavior, and vibratory communication of the brown-winged stink bug, Edessa meditabunda (Fabr.) (Heteroptera: Pentatomidae). Psyche 2012:1–9CrossRefGoogle Scholar
  117. Silva VP, Pereira MJB, Vivan LM, Moraes MCB, Laumann RA, Borges M (2014) Monitoramento do percevejo marrom Euschistus heros (Hemiptera: Pentatomidae) por feromônio sexual em lavoura de soja. Pesqui Agropecu Bras 49:844–852CrossRefGoogle Scholar
  118. Silveira S (2015) Isolamento reprodutivo em duas espécies simpátricas de Chinavia (Orian) (Hemiptera: Pentatomidae): Importância da comunicação vibracional e composição química da cutícula. MSc Thesis, Universidade de Brasília, BrazilGoogle Scholar
  119. Smaniotto LF, Panizzi AR (2015) Interactions of selected species of stink bugs (Hemiptera: Hetroptera: Pentatomidae) from leguminous crops with plants in Neotropics. Fla Entomol 98:7–17CrossRefGoogle Scholar
  120. Šolinc G (2017) Influence of temporal and spatial properties of airflow on the response of filiform sensilla of the bug Pyrrhocoris apterus. MSc Thesis, University of Ljubljana, SloveniaGoogle Scholar
  121. Stengl M, Zieglberger G, Boekhoff I, Krieger J (1999) Prereceptor events and transduction mechanisms in insect olfaction. In: Hansson BS (ed) Insect Olfaction. Springer, Berlin, pp 50–60Google Scholar
  122. Tada N, Yoshida M, Sato Y (2001a) Monitoring of forecasting for stink bugs in apple. 1. Characteristics of attraction to aggregation pheromone in Iwate Prefecture. Ann Rept Plant Prot North Japan 52:224–226Google Scholar
  123. Tada N, Yoshida M, Sato Y (2001b) Monitoring of forecasting for stink bugs in apple. 2. The possibility of forecasting with aggregation pheromone. Ann Rept Plant Prot North Japan 52:227–229Google Scholar
  124. Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4(1):101–110CrossRefGoogle Scholar
  125. Uy JAC, Safran RJ (2013) Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behav Ecol Sociobiol 67:1499–1511CrossRefGoogle Scholar
  126. Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 81–98Google Scholar
  127. Vogt RG (2003) Biochemical diversity of odor detection? OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology: the biosynthesis and detection of pheromone and plant volatiles. Elsevier Academic Press, Cambridge, MA, pp 391–445CrossRefGoogle Scholar
  128. Weber D, Khrimian A, Blassioli-Moraes MC, Millar JG (2018) The semiochemistry of Pentatomoidea. In: McPherson JE (ed) Invasive Stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 677–727. CrossRefGoogle Scholar
  129. Weissburg MJ (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198:188–202PubMedCrossRefPubMedCentralGoogle Scholar
  130. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New YorkGoogle Scholar
  131. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102(Suppl. 1):6543–6549PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wilson AJ, Dean M, Higham JP (2013) A game theoretic approach to multimodal communication. Behav Ecol Sociobiol 67:1399–1415CrossRefGoogle Scholar
  133. Wilson JK, Kessler A, Woods HA (2015) Noisy communication via airborne info chemicals. Bioscience 65:667–677CrossRefGoogle Scholar
  134. Zahn DK, Moreira JA, Millar JG (2008) Identification, synthesis, and bioassay of a male-specific aggregation pheromone from the harlequin bug, Murgantia histrionica. J Chem Ecol 34:238–251PubMedCrossRefGoogle Scholar
  135. Zarbin PHG, Fávaro CF, Vidal DM, Rodrigues MACM (2012) Male-produced sex pheromone of the stink bug Edessa meditabunda. J Chem Ecol 38:825–835CrossRefGoogle Scholar
  136. Zgonik V, Čokl A (2014) The role of signals of different modalities in initiating vibratory communication in Nezara viridula. Central Eur J Biol 9(2):200–211Google Scholar
  137. Zhang A, Borges M, Aldrich JR, Camp MJ (2003) Stimulatory bug volatiles for the Neotropical brown stink bug, Euschistus heros (F.) (Heteroptera: Pentatomidae). Neotrop Entomol 32:713–717CrossRefGoogle Scholar
  138. Zorović M (2005) Morphological and physiological properties of vibrational neurons in thoracic ganglia of the stink bug Nezara viridula (L.) (Heteroptera: Pentatomidae). PhD Thesis, University of Ljubljana, SloveniaGoogle Scholar
  139. Zorović M (2011) Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae). PLoS One 6:1–8CrossRefGoogle Scholar
  140. Zorović M, Prešern J, Čokl A (2008) Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.). J Comp Neurol 508:365–381PubMedPubMedCentralCrossRefGoogle Scholar
  141. Žunič A, Čokl A, Virant-Doberlet M, Millar JG (2008) Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101:1169–1178CrossRefGoogle Scholar
  142. Žunič A, Virant-Doberlet M, Čokl A (2011) Species recognition during substrate-borne communication in Nezara viridula (L.) (Pentatomidae: Heteroptera). J Insect Behav 24:468–487CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrej Čokl
    • 1
    Email author
  • Maria Carolina Blassioli-Moraes
    • 2
  • Raul Alberto Laumann
    • 2
  • Alenka Žunič
    • 1
  • Miguel Borges
    • 2
  1. 1.Department of Organisms and Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia
  2. 2.Laboratório de SemioquímicosEMBRAPA Recursos Genéticos e BiotecnologiaBrasiliaBrazil

Personalised recommendations