What Is Biotremology?

  • Peggy S. M. HillEmail author
  • Meta Virant-Doberlet
  • Andreas Wessel
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 6)


When a new discipline emerges in science with many unique characteristics, but others that are shared with sister disciplines, defining the boundaries is critical. What is and is not part of the core precepts of this discipline is probably easier to establish within the community than what exists along the edges. Due to our perceptional bias in favor of airborne mechanical signals, a distinction between bioacoustics and biotremology, the former studying communication by sound and the latter by surface-borne mechanical waves, may appear unnecessary. In this chapter, the authors make the first concerted effort to define biotremology with comprehensive arguments, in order to address the specifics of this modality, while still leaving space for exploration and growth of this still-emerging field. Biotremology studies are not limited to intraspecific vibrational communication, but also include other behaviors guided by substrate vibrations.


  1. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, Sunderland, MAGoogle Scholar
  2. Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41:1229–1240Google Scholar
  3. Busnel RG, Pasquinelly F, Dumortier B (1955) La trémulation du corps et la transmission aux des vibrations en résultant comme moyen d’information à courte portée des Ephippigéres máles et femelles. Bull Soc Zool Fr 80:18–22Google Scholar
  4. Cocroft R, Gogala M, Hill PSM, Wessel A (2014) Fostering research progress in a rapidly growing field. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 3–12Google Scholar
  5. Čokl A, Millar JC (2009) Manipulation of insect signaling for monitoring and control of pest insects. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Heidelberg, pp 279–316CrossRefGoogle Scholar
  6. Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193CrossRefGoogle Scholar
  7. Emerson AE, Simpson RC (1929) Apparatus for the detection of substratum communication among termites. Science 69:648–649PubMedCrossRefPubMedCentralGoogle Scholar
  8. Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc B 340:215–225CrossRefGoogle Scholar
  9. Endler JA (2014) The emerging field of tremology. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp vii–vixGoogle Scholar
  10. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954PubMedPubMedCentralCrossRefGoogle Scholar
  11. Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW et al (2016) Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci Rep 6:33370PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31CrossRefGoogle Scholar
  14. Hill PSM, Wessel A (2016) Primer: biotremology. Curr Biol 26:R187–R191PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198CrossRefGoogle Scholar
  16. Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system for detecting and attracting leafhopper males using species- and sex-specific substrate-borne vibrational signals. Comput Electron Agric 123:29–39CrossRefGoogle Scholar
  17. Krebs HA (1975) The august Krogh principle: “for many problems there is an animal on which it can be most conveniently studied”. J Exp Zool 194:221–226PubMedCrossRefPubMedCentralGoogle Scholar
  18. Krugner R, Gordon SD (2018) Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis. Pest Manag Sci 74:2013–2019CrossRefGoogle Scholar
  19. Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433CrossRefGoogle Scholar
  20. Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2015a) The effect of timing of female vibrational reply on male signaling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:e0139020PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kuhelj A, de Groot M, Pajk F, Simčič T, Virant-Doberlet M (2015b) Energetic cost of signaling in leafhopper vibrational signaling. Behav Ecol Sociobiol 69:815–828CrossRefGoogle Scholar
  22. Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper duetting. Anim Behav 114:139–146CrossRefGoogle Scholar
  23. Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 277–302Google Scholar
  24. Mankin RW (2012) Application of acoustics in insect pest management. CAB Rev 7:1–7CrossRefGoogle Scholar
  25. Matsuhashi M, Pankrushina AN, Takeuchi S, Ohshima H, Miyoi H, Endoh K, Murayama K, Watanabe H, Endo S, Tobi M, Mano Y, Hyodo M, Kobayashi T, Kaneko T, Otani S, Yoshimura S, Harata A, Sawada T (1998) Production of sound waves by bacterial cells and the response of bacterial cells to sound. J Gen Appl Microbiol 44:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  26. Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185CrossRefGoogle Scholar
  27. Mazzoni V, Polajnar J, Baldini M, Rossi Stacconi MV, Anfora G, Guidetti R, Maistrello L (2017) Use of substrate-borne vibrational signals to attract brown marmorated stink bug Halyomorpha halys. J Pest Sci 90:219–1229CrossRefGoogle Scholar
  28. Morris GK (1980) Calling display and mating behavior of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51CrossRefGoogle Scholar
  29. Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in Neotropical katydids (Orthoptera: Tettigoniidae). J Zool (Lond) 233:129–163CrossRefGoogle Scholar
  30. Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of the Swedish Homoptera Auchenorrhyncha with notes on their sound production. Opusc Entomol Suppl 10:1–146Google Scholar
  31. Pearman JV (1928) On sound production in the Psocoptera and on a presumed stridulatory organ. Entomol Monog Mag 64(3rd ser, v.14):179–186Google Scholar
  32. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations – potential for insect pest control. Pest Manag Sci 71:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  33. Polajnar J, Eriksson A, Lucchi A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921CrossRefGoogle Scholar
  34. Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327PubMedCrossRefPubMedCentralGoogle Scholar
  35. Shaw SR (1994) Detection of airborne sound by a cockroach ‘vibration detector’: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47PubMedPubMedCentralGoogle Scholar
  36. Snarr KA (2005) Seismic activity response as observed in mantled howlers (Alouatta palliata), Cuero y Salado Wildlife Refuge, Honduras. Primates 46:281–285PubMedCrossRefPubMedCentralGoogle Scholar
  37. Strauß J, Stumpner A (2015) Selective forces on origin, adaptation and reduction of tympanal ears in insects. J Comp Physiol A 201:155–169CrossRefGoogle Scholar
  38. Stritih N, Stumpner A (2009) Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68PubMedCrossRefPubMedCentralGoogle Scholar
  39. Strübing H (1958) Lautäuβerung – der entscheidende Faktor für das Zusammenfinden der Geschlechter bei Kleinzikaden (Homoptera – Auchenorrhyncha) (Vorläufige Mitteilung). Zoologische Beiträge. Neue Folge (Berlin) 4(1):15–21Google Scholar
  40. Strübing H (2006) Vibratory communication and mating behavior in the European lantern fly, Dictyophara europea (Dictyopharidae, Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behavior, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 351–355Google Scholar
  41. Strübing H (2014) Sound production: the crucial factor for mate finding in planthoppers (Homoptera: Auchenorrhyncha) (preliminary communication). In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 53–61Google Scholar
  42. Tributsch H (1982) When the snakes awake: animals and earthquake prediction. MIT, CambridgeGoogle Scholar
  43. Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behavior, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 81–97Google Scholar
  44. Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216PubMedCrossRefPubMedCentralGoogle Scholar
  45. Warkentin K (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71CrossRefGoogle Scholar
  46. Warkentin K, Caldwell MS, Mcdaniel JG (2006) Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. J Exp Biol 209:1376–1384PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wessel A (2014) Hildegard Strübing: a pioneer in vibrational communication research. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 47–51Google Scholar
  48. Wessel A, Hoch H, Asche M, von Rintelen T, Stelbrink B, Heck V, Stone FD, Howarth FG (2013) Rapid species radiation initiated by founder effects in Hawaiian cave planthoppers. Proc Natl Acad Sci USA 110:9391–9396PubMedCrossRefPubMedCentralGoogle Scholar
  49. Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M (2014) The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 395–444Google Scholar
  50. Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peggy S. M. Hill
    • 1
    Email author
  • Meta Virant-Doberlet
    • 2
  • Andreas Wessel
    • 3
  1. 1.Department of Biological SciencesUniversity of TulsaTulsaUSA
  2. 2.Department of Organisms and Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia
  3. 3.Museum of Natural History BerlinLeibniz Institute for Evolution and Biodiversity Science at Humboldt University BerlinBerlinGermany

Personalised recommendations