Mating Disruption by Vibrational Signals: State of the Field and Perspectives

  • Valerio MazzoniEmail author
  • Rachele Nieri
  • Anna Eriksson
  • Meta Virant-Doberlet
  • Jernej Polajnar
  • Gianfranco Anfora
  • Andrea Lucchi
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 6)


Until a few years ago, the concept of mating disruption had been exclusively associated with the use of pheromones to reduce population density of insect pests. Since the early 2000s, a novel approach has been proposed to the scientific community: vibrational mating disruption (VMD). The novelty is the use of disturbance vibrations to disrupt the mating behavior of insect pests that communicate by means of substrate-borne vibrations. This research falls within the new field of biotremology and it brought the VMD from a theoretical concept to practical open field experimentation: in 2017, VMD was applied in an organic vineyard in Northern Italy to control leafhopper pests’ population density. This achievement gave us the opportunity to report the state of the field for the method, to discuss the ongoing research and to make a comparison between pheromone mating disruption (PMD) and VMD. In this chapter, we review the salient moments that led to the field application of VMD. Then, we discuss the VMD characteristics and we provide a benchmark, using as reference the traditional PMD to discuss similarities and differences. Furthermore, we analyze the advantages and disadvantages of applying VMD to commercial crops. We are convinced that the first vibrational vineyard is a starting point and that biotremology will provide many innovative possibilities for farmers to control pests in the future. We also think that the introduction of electronic devices in the vineyard could be a trailblazer for the diffusion of smart technology in viticulture, thus improving its general management.



We are grateful to Dr. Claudio Ioriatti and Dr. Vittorio Veronelli for discussion and constructive comments to the manuscript; we thank Karen Wells for language revision. Financial support to the studies have been provided by Interneuron Project (IASMA, Fondazione Edmund Mach), research program P1-0255 and research projectV5-0525 (Slovenian National Research Agency), by Fondi Ateneo of Pisa University (2007), the European Union Seventh Framework Program (FP7/2007–2013) under the Grant agreement no. 265865, and CBC-Europe Ltd. (Milano, Italy).


  1. Anfora G, Baldessari M, De Cristofaro A, Germinara G, Ioriatti C, Reggiori F, Vitagliano S, Angeli G (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable Ecodian sex pheromone dispensers. J Econ Entomol 101:444–450PubMedCrossRefGoogle Scholar
  2. Aqeel-Ur-Rehman, Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Stand Interfaces 36:263–270CrossRefGoogle Scholar
  3. Baker T, Heath J (2005) Pheromones: function and use in insect control. In: Gilbert L, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 6. Elsevier, Amsterdam, pp 407–459CrossRefGoogle Scholar
  4. Baker T, Roelofs W (1981) Initiation and termination of oriental fruit moth male response to pheromone concentrations in the field. Environ Entomol 10:211–218CrossRefGoogle Scholar
  5. Barclay HJ, Judd GJR (1995) Models for mating disruption by means of pheromone for insect pest control. Res Popul Ecol (Kyoto) 37:239–247CrossRefGoogle Scholar
  6. Bartell L (1982) Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiol Entomol 7:353–364CrossRefGoogle Scholar
  7. Bengtsson BO, Löfstedt C (2007) Direct and indirect selection in moth pheromone evolution: population genetical simulations of asymmetric sexual interactions. Biol J Linn Soc 90(1):117–123. CrossRefGoogle Scholar
  8. Bengtsson M, Karg G, Kirsch P, Löfqvist J, Sauer A, Witzgall P (1994) Mating disruption of pea moth Cydia nigricana F.(Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J Chem Ecol 20:871–887PubMedCrossRefGoogle Scholar
  9. Böll S, Herrmann JV (2004) A long-term study on the population dynamics of the grape leafhopper (Empoasca vitis) and antagonistic mymarid species. J Pest Sci 77:33–42CrossRefGoogle Scholar
  10. Bosco D, Alma A, Arzone A (1997) Studies on population dynamics and spatial distribution of leafhoppers in vineyards (Homoptera: Cicadellidae). Ann Appl Biol 130(1):1–11CrossRefGoogle Scholar
  11. Brunner J, Welter S, Calkins C, Hilton R, Beer E, Dunley J, Unruh T, Knight A, Van Steenwyk R, Van Buskirk P (2002) Mating disruption of codling moth: a perspective from the Western United States. IOBC wprs Bull 25:1–11Google Scholar
  12. Canale A, Benelli G, Lanzo F, Giannotti P, Mazzoni V, Lucchi A (2013) The courtship song of fanning males in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae). Bull Entomol Res 103:303–309PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cardé R (1990) Principles of mating disruption. In: Ridgway R, Silverstein R, Inscoe M (eds) Behavior-modifying chemicals for insect management. Marcel Dekker, New York, pp 47–71Google Scholar
  14. Cardé RT (2007) Using pheromones to disrupt mating of moth pests. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, pp 122–169CrossRefGoogle Scholar
  15. Cardé RT, Baker T (1984) Sexual communication with pheromones. In: Bell W, Cardé R (eds) Chemical ecology of insects. Springer, Boston, MA, pp 355–383CrossRefGoogle Scholar
  16. Cardé RT, Haynes KF (2004) Structure of the pheromone communication channel in moths. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 283–332CrossRefGoogle Scholar
  17. Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585CrossRefGoogle Scholar
  18. Charmillot P, Pasquier D (2000) Lutte par confusion contre le vers de la grappe: succès et problèmes rencontrés. IOBC wprs Bull 23:145–147Google Scholar
  19. Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34:381–403. CrossRefGoogle Scholar
  20. Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50CrossRefGoogle Scholar
  21. Čokl A, Virant-Doberlet M, McDowell A (1999) Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav 58:1277–1283CrossRefGoogle Scholar
  22. Decante D, van Helden M (2006) Population ecology of Empoasca vitis (Göthe) and Scaphoideus titanus (Ball) in Bordeaux vineyards: Influence of migration and landscape. Crop Prot 25:696–704CrossRefGoogle Scholar
  23. Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193CrossRefGoogle Scholar
  24. Derlink M, Abt I, Mabon R, Julian C, Virant-doberlet M (2018) Mating behaviour of Psammotettix alienus (Hemiptera: Cicadellidae). Insect Sci 25(1):148–160PubMedCrossRefPubMedCentralGoogle Scholar
  25. Elkington J, Schal C, Onot T, Cardé R (1987) Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol Entomol 12:399–406CrossRefGoogle Scholar
  26. El-Sayed A, Unelius R, Liblikas I, Löfqvist J, Bengtsson M, Witzgall P (1998) Effect of codlemone isomers on codling moth (Lepidoptera: Tortricidae) male attraction. Environ Entomol 27:1250–1254CrossRefGoogle Scholar
  27. Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS One 6:e19692. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Evenden ML, Judd GJR, Borden JH (1999) Mating disruption of two sympatric, orchard inhabiting tortricids, Chroistoneura rosaceana and Pandemis limiata (Lepidoptera: Tortricidae), with pheromone components of both species’ blends. J Econ Entomol 92:330–390CrossRefGoogle Scholar
  30. Fabre JH (1966) The insect world of Jean H. Fabre/in the translation of Alexander Teixeira de Mattos. New York, Dodd, MeadGoogle Scholar
  31. Gaston LK, Shorey HH, Saario CA (1967) Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature 213:1155–1155CrossRefGoogle Scholar
  32. Gemeno C, Baldo G, Nieri R, Valls J, Alomar O, Mazzoni V (2015) Substrate-borne vibrational signals in mating communication of Macrolophus bugs. J Insect Behav 28(4):482–498CrossRefGoogle Scholar
  33. Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31CrossRefGoogle Scholar
  34. Gordon SD, Sandoval N, Mazzoni V, Krugner R (2017) Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis. Entomol Exp Appl 164(1):27–34. CrossRefGoogle Scholar
  35. Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A (2013) Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol Rev Camb Philos Soc 88:787–808PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191PubMedPubMedCentralCrossRefGoogle Scholar
  37. Howse PE, Stevens IDR, Jones CO (1998) Mating disruption. In: Howse PE, Jones OT, Stevens IDR (eds) Insect pheromones and their use in pest management. Springer, Dordrecht, pp 314–344CrossRefGoogle Scholar
  38. Ichikawa T, Ishii S (1974) Mating signal of the Brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198CrossRefGoogle Scholar
  39. Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. J Chem Ecol 42:571–583PubMedCrossRefGoogle Scholar
  40. Ioriatti C, Bagnoli B, Lucchi A, Veronelli V (2005) Vine moths control by mating disruption in Italy: results and future prospects. Redia 87:117–128Google Scholar
  41. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta (Berh) 114:143–157CrossRefGoogle Scholar
  43. Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289PubMedCrossRefGoogle Scholar
  44. Jones VP, Aihara-Sasaki M (2001) Demographic analysis of delayed mating in mating disruption: a case study with Cryptophelbia illepida (Lepidoptera: Tortricidae). J Econ Entomol 94:785–792PubMedCrossRefGoogle Scholar
  45. Jones V, Wiman N, Brunner J (2008) Comparison of delayed female mating on reproductive biology of codling moth and obliquebanded leafroller. Environ Entomol 37:679–685PubMedCrossRefGoogle Scholar
  46. Karg G, Sauer A (1997) Seasonal variation of pheromone concentration in mating disruption trials against European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) measured by EAG. J Chem Ecol 23:487–501CrossRefGoogle Scholar
  47. Karg G, Suckling D, Bradley S (1994) Absorption and release of pheromone of Epiphyas postvittana (Lepidoptera: Tortricidae) by apple leaves. J Chem Ecol 20:1825–1841PubMedCrossRefGoogle Scholar
  48. Knight A (1996) Why so many mated female codling moths in disrupted orchards? In: Proceedings of the Washington State Horticultural Association, vol 92, pp 213–214Google Scholar
  49. Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Comput Electron Agric 123:29–39CrossRefGoogle Scholar
  50. Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433. CrossRefGoogle Scholar
  51. Kuhelj A, De Groot M, Blejec A, Virant-Doberlet M (2015) The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:1–15. CrossRefGoogle Scholar
  52. Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper vibrational duetting. Anim Behav 114:139–146CrossRefGoogle Scholar
  53. Leal W (2005) Pheromone reception. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals II. Topics in current chemistry, vol 240. Springer, Berlin, pp 1–36Google Scholar
  54. Lessio F, Alma A (2004) Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera: Cicadellidae), vector of the phytoplasma agent of grapevine flavescence dorée. Agric For Entomol 6:121–127CrossRefGoogle Scholar
  55. Linn C, Campbell M, Roelofs W (1987) Pheromone components and active spaces: what do moths smell and where do they smell it? Science 237:650–652PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lintner JA (1882) A new principle in protection against insect attack. West NY Hortic Soc Proc 27:52–66Google Scholar
  57. Liu S, Li Z, Sui Y, Schaefer DA, Alele PO, Chen J, Yang X (2015) Spider foraging strategies dominate pest suppression in organic tea plantations. BioControl 60:839–847CrossRefGoogle Scholar
  58. Louis F, Schirra K (2001) Mating disruption of Lobesia botrana (Lepidoptera: Tortricidae) in vineyards with very high population densities. IOBC wprs Bull 24:75–79Google Scholar
  59. Maixner M (2003) A sequential sampling procedure for Empoasca vitis Goethe (Homoptera: Auchenorrhyncha). IOBC wprs Bull 26(8):209–215Google Scholar
  60. Mankin R, Rohde B, Mcneill S (2013) Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96:1546–1555CrossRefGoogle Scholar
  61. Mazzoni V, Cosci F, Lucchi A, Santini L (2001) Occurance of leafhopper (Auchenorrhyncha, Cicadellidae) in three vineyards of the Pisa district. IOBC wprs Bulletin 24(7):267–271Google Scholar
  62. Mazzoni V, Lucchi A, Cokl A, Presern J, Virant-Doberlet M (2009a) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185CrossRefGoogle Scholar
  63. Mazzoni V, Presern J, Lucchi A, Virant-Doberlet M (2009b) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mazzoni V, Lucchi A, Ioriatti C, Virant-Doberlet M, Anfora G (2010) Mating behavior of Hyalesthes obsoletus (Hemiptera: Cixiidae). Ann Entomol Soc Am 103(5):813–822CrossRefGoogle Scholar
  65. Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 125–145Google Scholar
  66. Mazzoni V, Polajnar J, Baldini M, Rossi Stacconi MV, Anfora G, Guidetti R, Maistrello L (2017) Use of substrate-borne vibrational signals to attract the Brown Marmorated Stink Bug, Halyomorpha halys. J Pest Sci 90(4):1219–1229CrossRefGoogle Scholar
  67. McNeil MEA (2015) Electronic hive monitoring. Am Bee J.
  68. McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051CrossRefGoogle Scholar
  69. Meikle WG, Holst N (2015) Application of continuous monitoring of honeybee colonies. Apidologie 46:10–22CrossRefGoogle Scholar
  70. Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971PubMedCrossRefGoogle Scholar
  71. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281CrossRefGoogle Scholar
  72. Millar J (2007) Insect pheromones for integrated pest management: promise versus reality. Redia XC:51–55Google Scholar
  73. Miller JR, Gut LJ, de Lame FM, Stelinski LL (2006) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part i): theory. J Chem Ecol 32:2089–2114PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mitter E, Dorn S (1998) Vibrational sounding by the pupal parasitoid Pimpla (Coccygomimus) turionellae: an additional solution to the reliability – detectability problem. Biol Control 146:141–146Google Scholar
  75. Nieri R, Mazzoni V (2018) The reproductive strategy and the vibrational duet of the leafhopper Empoasca vitis Göthe. Insect Sci 25(5):869–882. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nieri R, Mazzoni V, Gordon SD, Krugner R (2017) Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis. J Pest Sci 90(3):887–899CrossRefGoogle Scholar
  77. Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C, Grando M, Gary C, Lafond D, Duso C, Thiery D, Mazzoni V, Anfora G (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot 97:70–84CrossRefGoogle Scholar
  78. Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Process 107:68–78CrossRefGoogle Scholar
  79. Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921CrossRefGoogle Scholar
  80. Qi L, Teng G, Hou T, Zhu B, Liu X (2010) Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. Comput Comput Technol Agric III 317:449–454Google Scholar
  81. Rakitov R (2002) What are brochosomes for? An enigma of leafhoppers (Hemiptera, Cicadellidae). Denisia 4:411–432Google Scholar
  82. Renou M, Guerrero A (2000) Insect pheromones in olfaction research and semiochemicals-based pest control strategies. Annu Rev Entomol 45:605–630PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rothschild G (1975) Control of oriental fruit moth (Cydia molesta (Busck) (Lepidoptera, Tortricidae)) with synthetic sex pheromone. Bull Entomol Res 65:473–490CrossRefGoogle Scholar
  84. Sanders CJ (1997) Mechanisms of mating disruption in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research. Springer, Boston, MA, pp 333–346CrossRefGoogle Scholar
  85. Sarfraz M, Dosdall LM, Keddie BA (2006) Diamondback moth-host plant interactions: implications for pest management. Crop Prot 25:625–639CrossRefGoogle Scholar
  86. Schroeder PC, Shelton AM, Ferguson CS, Hoffmann MP, Petzoldt CH (2000) Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage. Entomol Exp Appl 94:243–248CrossRefGoogle Scholar
  87. Sharov A, Leonard D, Liebhold A, Roberts E, Dickerson W (2002) “Slow the Spread” a national program to contain the gypsymoth. J For 100:30–35Google Scholar
  88. Struye MH, Mortier HJ, Arnold G, Miniggio C, Borneck R (1994) Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie 25:384–395CrossRefGoogle Scholar
  89. Suckling D, SR G, Gibb A, Karg G (1999) Predicting atmospheric concentration of pheromone in treated apple orchards. J Chem Ecol 25:117–139CrossRefGoogle Scholar
  90. Tamaki Y (1985) Sex pheromones. In: Comprehensive insect physiology, biochemistry and pharmacology, vol 9: Behaviour. Pergamon Press, Willowdale, ON, pp 145–191Google Scholar
  91. Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93:548–558CrossRefGoogle Scholar
  92. Torres-Vila LM, Rodríguez-Molina MC, Stockel J (2002) Delayed mating reduces reproductive output of female European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 92:241–249PubMedCrossRefPubMedCentralGoogle Scholar
  93. Trimble R (1995) Mating disruption for controlling the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in organic apple production in southwestern Ontario. Can Entomol 127:493–505CrossRefGoogle Scholar
  94. Vélez MJ, Brockmann HJ (2006) Seasonal variation in selection on male calling song in the field cricket, Gryllus rubens. Anim Behav 72:439–448CrossRefGoogle Scholar
  95. Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge M (eds) Insect sounds and communication: Physiology, behaviour, ecology, and evolution. Taylor & Francis, Boca Raton, FL, pp 81–97Google Scholar
  96. Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  97. Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson OC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft R, Gogala M, Hill P, Wessel A (eds) Studying vibrational communication. Animal signals and communication, vol 3. Springer, BerlinGoogle Scholar
  98. Wall C, Sturgeon D, Greenway A, Perry J (1981) Contamination of vegetation with synthetic sex-attractant released from traps for the pea moth, Cydia nigricana. Entomol Exp Appl 30:111–115CrossRefGoogle Scholar
  99. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry – recent development and future perspective. Comput Electron Agric 50:1–14CrossRefGoogle Scholar
  100. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522PubMedCrossRefPubMedCentralGoogle Scholar
  101. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wu CH, Elias DO (2014) Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. Anim Behav 90:17–56CrossRefGoogle Scholar
  103. Wyatt T (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  104. Zschokke S, Hénaut Y, Benjamin SP, Garcia-Ballinas JA (2006) Prey-capture strategies in sympatric web-building spiders. Can J Zool 84:964–973CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valerio Mazzoni
    • 1
    Email author
  • Rachele Nieri
    • 1
    • 2
  • Anna Eriksson
    • 1
  • Meta Virant-Doberlet
    • 3
  • Jernej Polajnar
    • 3
  • Gianfranco Anfora
    • 1
    • 2
  • Andrea Lucchi
    • 4
  1. 1.Research and Innovation Centre, Fondazione Edmund MachSan Michele all’AdigeItaly
  2. 2.Agriculture Food and Environment CentreUniversity of TrentoSan Michele all’AdigeItaly
  3. 3.Department of Organisms and Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia
  4. 4.Department Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations