Advertisement

Seismic Communication in the Amphibia with Special Emphases on the Anura

  • Peter M. NarinsEmail author
Chapter
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 6)

Abstract

Amphibians have been defined as quadrupedal vertebrates having two occipital condyles on the skull and no more than one sacral vertebra. Although this morphologically based definition continues to be valid and accurate, we now know that, in addition, all amphibians studied to date exhibit extreme sensitivity to substrate-borne vibrations. In this chapter, the pathways through which seismic signals are transferred to the inner ear for detection and processing, as well as the most common methods of seismic signal generation in amphibians, are reviewed. Several well-studied examples of amphibians that use vibrational signals for communication are presented, and the case is made for the continued study of seismic signaling in the vertebrates.

Keywords

Vibrational signals Anuran amphibians Rayleigh waves Surface waves Bioacoustics 

References

  1. Barnett KE, Cocroft RB, Fleishman LJ (1999) Possible communication by substrate vibration in a chameleon. Copeia 1999(1):225–228CrossRefGoogle Scholar
  2. Bertoluci J (2002) Pedal luring in the leaf-frog Phyllomedusa burmeisteri (Anura, Hylidae, Phyllomedusinae). Phyllomedusa 1:93–95CrossRefGoogle Scholar
  3. Caldwell MS, Johnston GR, McDaniel JG, Warkentin KM (2010a) Vibrational signaling in the agonistic interactions of Red-eyed treefrogs. Curr Biol 20:1012–1017PubMedCrossRefGoogle Scholar
  4. Caldwell MS, McDaniel JG, Warkentin KM (2010b) Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Anim Behav 79:255–260CrossRefGoogle Scholar
  5. Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, London, pp 701–730CrossRefGoogle Scholar
  6. Cardoso AJ, Heyer WR (1995) Advertisement, aggressive, and possible seismic signals of the frog Leptodactylus syphax (Amphibia, Leptodactylidae). Alytes 13:67–76Google Scholar
  7. Christensen-Dalsgaard J, Jørgensen MB (1988) The response characteristics of vibration-sensitive saccular fibers in the grassfrog, Rana temporaria. J Comp Physiol 162:633–638CrossRefGoogle Scholar
  8. Christensen-Dalsgaard J, Jørgensen MB (1996) Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria. J Comp Physiol 179:437–445CrossRefGoogle Scholar
  9. Christensen-Dalsgaard J, Narins PM (1993) Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol 172:653–662CrossRefGoogle Scholar
  10. Christensen-Dalsgaard J, Walkowiak W (1999) In vitro and in vivo responses of saccular and caudal nucleus neurons in the grass frog (Rana temporaria). Eur J Morphol 37(2, 3):206–210PubMedCrossRefGoogle Scholar
  11. Christensen-Dalsgaard J, Ludwig TA, Narins PM (2002) Call diversity in an old world treefrog: level dependence and latency of acoustic responses. Bioacoustics 13:21–35CrossRefGoogle Scholar
  12. Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) (2014) Studying vibrational communication. Springer, BerlinGoogle Scholar
  13. Grafe TU (2008) Toe waving in the brown marsh frog Rana baramica: pedal luring to attract prey? Sci Bruneiana 9:3–5Google Scholar
  14. Gridi-Papp M, Narins PM (2010) Seismic detection and communication in amphibians. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 69–83Google Scholar
  15. Hagman M, Shine R (2008) Deceptive digits: the functional significance of toe waving by cannibalistic cane toads, Chaunus marinus. Anim Behav 75:123–131CrossRefGoogle Scholar
  16. Hartmann MT, Giasson LOM, Hartmann PA, Haddad CFB (2005) Visual communication in Brazilian species of anurans from the Atlantic forest. J Nat Hist 39:1675–1685CrossRefGoogle Scholar
  17. Hetherington TE, Lindquist ED (1999) Lung-based hearing in an “earless” anuran amphibian. J Comp Physiol A 184:395–401CrossRefGoogle Scholar
  18. Hill PSM (2008) Vibration communication in animals. Harvard University Press, CambridgeGoogle Scholar
  19. Hill PSM (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenshaften 96:1355–1371CrossRefGoogle Scholar
  20. Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:68–172CrossRefGoogle Scholar
  21. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47:1940–1951CrossRefGoogle Scholar
  22. Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189CrossRefGoogle Scholar
  23. Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar EH, Moore SW, Yu X-L (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Zool 41:1185–1199Google Scholar
  24. Lindquist ED, Hetherington TE, Volman SF (1998) Biomechanical and neurophysiological studies on audition in eared and earless harlequin frogs (Atelopus). J Comp Physiol A 183:265–271PubMedCrossRefGoogle Scholar
  25. Lopez PT, Narins PM, Lewis ER, Moore SW (1988) Acoustically-induced call modification in the white-lipped frog, Leptodactylus albilabris. Anim Behav 36:1295–1308CrossRefGoogle Scholar
  26. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353CrossRefGoogle Scholar
  27. Márquez R, Beltrán JF, Llusia D, Penna M, Narins PM (2016) Synthetic rainfall vibrations evoke toad emergence. Curr Biol 26:R1270–R1271PubMedCrossRefGoogle Scholar
  28. Mason MJ (2007) Pathways for sound transmission to the inner ear in amphibians. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 147–183Google Scholar
  29. Mason MJ, Narins PM (2002) Vibrometric studies of the middle ear of the bullfrog (Rana catesbeiana) II: the operculum. J Exp Biol 205:3167–3176PubMedGoogle Scholar
  30. Mason MJ, Lin CC, Narins PM (2003) Sex differences in the middle ear of the bullfrog (Rana catesbeiana). Brain Behav Evol 61:91–101PubMedCrossRefGoogle Scholar
  31. Moore SW, Lewis ER, Narins PM, Lopez PT (1989) The call timing algorithm of the white-lipped frog Leptodactylus albilabris. J Comp Physiol 164:309–319CrossRefGoogle Scholar
  32. Narins PM (1990) Seismic communication in anuran amphibians. Bioscience 40:268–274CrossRefGoogle Scholar
  33. Narins PM (1992) Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui. J Acoust Soc Am 91:3551–3557PubMedCrossRefGoogle Scholar
  34. Narins PM (1995) Comparative aspects of interactive communication. In: Flock Å, Ottoson D, Ulfendahl M (eds) Active hearing. Elsevier Science, Oxford, pp 363–372Google Scholar
  35. Narins PM (2001) Vibration communication in vertebrates. In: Barth F, Schmidt A (eds) Ecology of sensing. Springer, Berlin, pp 127–148CrossRefGoogle Scholar
  36. Narins PM, Clark GA (2016) Principles of matched filtering with auditory examples from selected vertebrates. In: von der Emde G, Warrant E (eds) The ecology of animal senses: matched filtering for economical sensing. Springer, Heidelberg, pp 111–140CrossRefGoogle Scholar
  37. Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387CrossRefGoogle Scholar
  38. Narins PM, Lewis ER, Jarvis JUM, O’Riain J (1997) The use of seismic signals by fossorial Southern African mammals: a neuroethological gold mine. Brain Res Bull 44:641–646CrossRefGoogle Scholar
  39. Narins PM, Feng AS, Yong H-S, Christensen-Dalsgaard J (1998) Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsula Malaysia. Herpetologica 54:129–142Google Scholar
  40. Narins PM, Losin N, O’Connell-Rodwell CE (2009) Seismic and vibrational signals in animals. In: Squire LR (ed) Encyclopedia of neuroscience. Elsevier, Amsterdam, pp 555–559Google Scholar
  41. Narins PM, Stoeger-Horwath A, O’Connell-Rodwell CE (2016) Infrasound and seismic communication in the vertebrates with special emphasis on the Afrotheria: an update and future directions. In: Suthers RA, Fitch WT, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer, Heidelberg, pp 191–227CrossRefGoogle Scholar
  42. Narvaes P, Rodrigues MT (2005) Visual communication, reproductive behavior, and home range of Hylodes dactylocinus (Anura: Leptodactylidae). Phyllomedusa 4:147–158CrossRefGoogle Scholar
  43. O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion. J Acoust Soc Am 108(6):3066–3072CrossRefGoogle Scholar
  44. O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shriver D, Arnason BT, Hart LA (2006) Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59(6):842–850CrossRefGoogle Scholar
  45. Purgue AP, Narins PM (2000) Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physiol 186:481–488CrossRefGoogle Scholar
  46. Rivero JA (1978) Los Anfibios y Reptiles de Puerto Rico. Universidad de Puerto Rico Editorial Universitaria, San JuanGoogle Scholar
  47. Ross RJ, Smith JJB (1979) Detection of substrate vibrations by salamanders: eighth cranial nerve activity. Can J Zool 57:368–374CrossRefGoogle Scholar
  48. Ross RJ, Smith JJB (1980) Detection of substrate vibrations by salamanders: frequency sensitivity of the ear. Comp Biochem Physiol 65A:167–172CrossRefGoogle Scholar
  49. Rujirawan A, Stuart BL, Aowphol A (2013) A new tree frog in the genus Polypedates (Anura: Rhacophoridae) from southern Thailand. Zootaxa 3702(6):545–565PubMedCrossRefGoogle Scholar
  50. Skyrms B (2010) Signals: evolution, learning and information. Oxford University Press, OxfordCrossRefGoogle Scholar
  51. Sloggett JJ, Zeilstra I (2008) Waving or tapping? Vibrational stimuli and the general function of toe twitching in frogs and toads (Amphibia: Anura). Anim Behav 76:e1–e4CrossRefGoogle Scholar
  52. Smotherman M, Narins PM (2004) Evolution of the amphibian ear. In: Manley GA, Popper A, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 164–199CrossRefGoogle Scholar
  53. Toledo LF, Araújo OGS, Guimarães LD, Lingnau R, Haddad CFB (2007) Visual and acoustic signaling in three species of Brazilian nocturnal tree frogs (Anura, Hylidae). Phyllomedusa 4:61–68CrossRefGoogle Scholar
  54. Warkentin KM (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching in red-eyed treefrogs. Anim Behav 70:59–71CrossRefGoogle Scholar
  55. Warkentin KM, Caldwell MS (2009) Assessing risk: embryos, information, and escape hatching. In: Dukas R, Ratcliffe J (eds) Cognitive ecology II. University of Chicago Press, Chicago, pp 177–200CrossRefGoogle Scholar
  56. Warkentin KM, Caldwell MS, McDaniel JG (2006) Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. J Exp Biol 209:1376–1384PubMedPubMedCentralCrossRefGoogle Scholar
  57. Warkentin KM, Caldwell MS, Siok TD, D’Amato AT, McDaniel JG (2007) Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. J Exp Biol 210:614–619PubMedCrossRefGoogle Scholar
  58. Wehner R (1987) “Matched filters” – neural models of the external world. J Comp Physiol A 161:511–531CrossRefGoogle Scholar
  59. Wever EG (1973) The ear and hearing in the frog, Rana pipiens. J Morphol 141:461–478PubMedCrossRefGoogle Scholar
  60. Wiley RH (2013) Signal detection, noise, and the evolution of communication. In: Brumm H (ed) Animal communication and noise. Springer, BerlinGoogle Scholar
  61. Wood JD, O’Connell-Rodwell CE (2010) Studying vibrational communication: equipment options, recording, playback and analysis techniques. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 163–181Google Scholar
  62. Yu X-L, Lewis ER, Feld D (1991) Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. J Comp Physiol 169:241–248CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Integrative Biology and PhysiologyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations