The Oncoprotein Gankyrin/PSMD10 as a Target of Cancer Therapy

  • Jun Fujita
  • Toshiharu Sakurai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1164)


Gankyrin (also called PSMD10, p28, or p28GANK) is a crucial oncoprotein that is upregulated in various cancers and assumed to play pivotal roles in the initiation and progression of tumors. Although the in vitro function of gankyrin is relatively well characterized, its role in vivo remains to be elucidated. We have investigated the function of gankyrin in vivo by producing mice with liver parenchymal cell-specific gankyrin ablation (Alb-Cre;gankyrinf/f) and gankyrin deletion both in liver parenchymal and in non-parenchymal cells (Mx1-Cre;gankyrinf/f). Gankyrin deficiency both in non-parenchymal cells and parenchymal cells, but not in parenchymal cells alone, reduced STAT3 activity, interleukin-6 production, and cancer stem cell marker expression, leading to attenuated tumorigenic potential in the diethylnitrosamine hepatocarcinogenesis model. Essentially similar results were obtained by analyzing mice with intestinal epithelial cell-specific gankyrin ablation (Villin-Cre;Gankyrinf/f) and gankyrin deletion both in myeloid and epithelial cells (Mx1-Cre;Gankyrinf/f) in the colitis-associated cancer model. Clinically, gankyrin expression in the tumor microenvironment was negatively correlated with progression-free survival in patients undergoing treatment with Sorafenib for hepatocellular carcinomas. These findings indicate important roles played by gankyrin in non-parenchymal cells as well as parenchymal cells in the pathogenesis of liver cancers and colorectal cancers, and suggest that by acting both on cancer cells and on the tumor microenvironment, anti-gankyrin agents would be promising as therapeutic and preventive strategies against various cancers, and that an in vitro cell culture models that incorporate the effects of non-parenchymal cells and gankyrin would be useful for the study of human cell transformation.


Gankyrin Proteasome Tumor suppressor Gene therapy Tumor microenvironment 



We thank Dr. L. Feng (RNTein Biotech Lab, CA) for providing us with plasmid nanoparticles, Dr. R.J. Mayer (Nottingham University, UK) and Dr. J.S. Rhim (Uniformed Services University of Health Sciences, MD) for helpful suggestions, and Ms. C. Onishi for technical assistance. This work was partly supported by the grants from Japan Society for the Promotion of Science.


  1. 1.
    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359–E386.CrossRefPubMedGoogle Scholar
  2. 2.
    Shin, J. W., & Chung, Y. H. (2013). Molecular targeted therapy for hepatocellular carcinoma: Current and future. World Journal of Gastroenterology, 19(37), 6144–6155. Scholar
  3. 3.
    Higashitsuji, H., Itoh, K., Nagao, T., Dawson, S., Nonoguchi, K., Kido, T., Mayer, R. J., Arii, S., & Fujita, J. (2000). Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nature Medicine, 6(1), 96–99.CrossRefPubMedGoogle Scholar
  4. 4.
    Zamani, P., Matbou Riahi, M., Momtazi-Borojeni, A. A., & Jamialahmadi, K. (2018). Gankyrin: A novel promising therapeutic target for hepatocellular carcinoma. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1301–1313.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang, C., & Cheng, L. (2017). Gankyrin as a potential therapeutic target for cancer. Investigational New Drugs, 35(5), 655–661. Scholar
  6. 6.
    Wang, X., Jiang, B., & Zhang, Y. (2016). Gankyrin regulates cell signaling network. Tumour Biology, 37(5), 5675–5682. Scholar
  7. 7.
    Iakova, P., Timchenko, L., & Timchenko, N. A. (2011). Intracellular signaling and hepatocellular carcinoma. Seminars in Cancer Biology, 21(1), 28–34. Scholar
  8. 8.
    Dawson, S., Higashitsuji, H., Wilkinson, A. J., Fujita, J., & Mayer, R. J. (2006). Gankyrin: A new oncoprotein and regulator of pRb and p53. Trends in Cell Biology, 16(5), 229–233.CrossRefPubMedGoogle Scholar
  9. 9.
    Higashitsuji, H., Liu, Y., Mayer, R. J., & Fujita, J. (2005). The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation. Cell Cycle, 4(10), 1335–1337.CrossRefPubMedGoogle Scholar
  10. 10.
    Hori, T., Kato, S., Saeki, M., DeMartino, G. N., Slaughter, C. A., Takeuchi, J., Toh-e, A., & Tanaka, K. (1998). cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene, 216(1), 113–122.CrossRefPubMedGoogle Scholar
  11. 11.
    Dawson, S., Apcher, S., Mee, M., Higashitsuji, H., Baker, R., Uhle, S., Dubiel, W., Fujita, J., & Mayer, R. J. (2002). Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. The Journal of Biological Chemistry, 277(13), 10893–10902.CrossRefPubMedGoogle Scholar
  12. 12.
    Saeki, Y., Toh-E, A., Kudo, T., Kawamura, H., & Tanaka, K. (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137(5), 900–913. Scholar
  13. 13.
    Krzywda, S., Brzozowski, A. M., Higashitsuji, H., Fujita, J., Welchman, R., Dawson, S., Mayer, R. J., & Wilkinson, A. J. (2004). The crystal structure of gankyrin, an oncoprotein found in complexes with cyclin-dependent kinase 4, a 19 S proteasomal ATPase regulator, and the tumor suppressors Rb and p53. The Journal of Biological Chemistry, 279(2), 1541–1545.CrossRefPubMedGoogle Scholar
  14. 14.
    Iwai, A., Marusawa, H., Kiuchi, T., Higashitsuji, H., Tanaka, K., Fujita, J., & Chiba, T. (2003). Role of a novel oncogenic protein, gankyrin, in hepatocyte proliferation. Journal of Gastroenterology, 38(8), 751–758.CrossRefPubMedGoogle Scholar
  15. 15.
    Higashitsuji, H., Higashitsuji, H., Itoh, K., Sakurai, T., Nagao, T., Sumitomo, Y., Masuda, T., Dawson, S., Shimada, Y., Mayer, R. J., & Fujita, J. (2005). The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell, 8(1), 75–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Whitby, F. G., & Hill, C. P. (2007). A versatile platform for inactivation and destruction. Structure, 15(2), 137–138.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang, G. L., Shi, X., Haefliger, S., Jin, J., Major, A., Iakova, P., Finegold, M., & Timchenko, N. A. (2010). Elimination of C/EBPalpha through the ubiquitin-proteasome system promotes the development of liver cancer in mice. The Journal of Clinical Investigation, 120(7), 2549–2562. Scholar
  18. 18.
    Qin, X., Wang, X., Liu, F., Morris, L. E., Wang, X., Jiang, B., & Zhang, Y. (2016). Gankyrin activates mTORC1 signaling by accelerating TSC2 degradation in colorectal cancer. Cancer Letters, 376(1), 83–94. Scholar
  19. 19.
    Sun, W., Ding, J., Wu, K., Ning, B. F., Wen, W., Sun, H. Y., Han, T., Huang, L., Dong, L. W., Yang, W., Deng, X., Li, Z., Wu, M. C., Feng, G. S., Xie, W. F., & Wang, H. Y. (2011). Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology, 54(4), 1259–1272. Scholar
  20. 20.
    Lewis, K., Valanejad, L., Cast, A., Wright, M., Wei, C., Iakova, P., Stock, L., Karns, R., Timchenko, L., & Timchenko, N. (2017). RNA binding protein CUGBP1 inhibits liver Cancer in a phosphorylation-dependent manner. Molecular and Cellular Biology, 37(16), e00128-17. Scholar
  21. 21.
    Man, J. H., Liang, B., Gu, Y. X., Zhou, T., Li, A. L., Li, T., Jin, B. F., Bai, B., Zhang, H. Y., Zhang, W. N., Li, W. H., Gong, W. L., Li, H. Y., & Zhang, X. M. (2010). Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. The Journal of Clinical Investigation, 120(8), 2829–2841. Scholar
  22. 22.
    Liu, Y., Higashitsuji, H., Higashitsuji, H., Itoh, K., Sakurai, T., Koike, K., Hirota, K., Fukumoto, M., & Fujita, J. (2013). Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1. Biochemical and Biophysical Research Communications, 432(1), 22–27. Scholar
  23. 23.
    Feng, G. S. (2012). Conflicting roles of molecules in hepatocarcinogenesis: Paradigm or paradox. Cancer Cell, 21(2), 150–154. Scholar
  24. 24.
    Higashitsuji, H., Higashitsuji, H., Liu, Y., Masuda, T., Fujita, T., Abdel-Aziz, H. I., Kongkham, S., Dawson, S., Mayer, J. R., Itoh, Y., Sakurai, T., Itoh, K., & Fujita, J. (2007). The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity. Biochemical and Biophysical Research Communications, 363(3), 879–884.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen, Y., Li, H. H., Fu, J., Wang, X. F., Ren, Y. B., Dong, L. W., Tang, S. H., Liu, S. Q., Wu, M. C., & Wang, H. Y. (2007). Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Research, 17(12), 1020–1029.CrossRefPubMedGoogle Scholar
  26. 26.
    Ren, Y. B., Luo, T., Li, J., Fu, J., Wang, Q., Cao, G. W., Chen, Y., & Wang, H. Y. (2015). p28(GANK) associates with p300 to attenuate the acetylation of RelA. Molecular Carcinogenesis, 54(12), 1626–1635. Scholar
  27. 27.
    Nagao, T., Higashitsuji, H., Nonoguchi, K., Sakurai, T., Dawson, S., Mayer, R. J., Itoh, K., & Fujita, J. (2003). MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. The Journal of Biological Chemistry, 278(12), 10668–10674.CrossRefPubMedGoogle Scholar
  28. 28.
    Umemura, A., Itoh, Y., Itoh, K., Yamaguchi, K., Nakajima, T., Higashitsuji, H., Onoue, H., Fukumoto, M., Okanoue, T., & Fujita, J. (2008). Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology, 47(2), 493–502.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakurai, T., Higashitsuji, H., Kashida, H., Watanabe, T., Komeda, Y., Nagai, T., Hagiwara, S., Kitano, M., Nishida, N., Abe, T., Kiyonari, H., Itoh, K., Fujita, J., & Kudo, M. (2017). The oncoprotein gankyrin promotes the development of colitis-associated cancer through activation of STAT3. Oncotarget, 8(15), 24762–24776. Scholar
  30. 30.
    Luo, T., Fu, J., Xu, A., Su, B., Ren, Y., Li, N., Zhu, J., Zhao, X., Dai, R., Cao, J., Wang, B., Qin, W., Jiang, J., Li, J., Wu, M., Feng, G., Chen, Y., & Wang, H. (2016). PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy, 12(8), 1355–1371. Scholar
  31. 31.
    Yang, C., Tan, Y. X., Yang, G. Z., Zhang, J., Pan, Y. F., Liu, C., Fu, J., Chen, Y., Ding, Z. W., Dong, L. W., & Wang, H. Y. (2016). Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma. The Journal of Experimental Medicine, 213(5), 859–875. Scholar
  32. 32.
    Qian, Y. W., Chen, Y., Yang, W., Fu, J., Cao, J., Ren, Y. B., Zhu, J. J., Su, B., Luo, T., Zhao, X. F., Dai, R. Y., Li, J. J., Sun, W., Wu, M. C., Feng, G. S., & Wang, H. Y. (2012). p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology, 142(7), 1547–58.e14. Scholar
  33. 33.
    Chen, J., Bai, M., Ning, C., Xie, B., Zhang, J., Liao, H., Xiong, J., Tao, X., Yan, D., Xi, X., Chen, X., Yu, Y., Bast, R. C., Zhang, Z., Feng, Y., & Zheng, W. (2016). Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene, 35(19), 2506–2517. Scholar
  34. 34.
    Zhao, X., Fu, J., Xu, A., Yu, L., Zhu, J., Dai, R., Su, B., Luo, T., Li, N., Qin, W., Wang, B., Jiang, J., Li, S., Chen, Y., & Wang, H. (2015). Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death & Disease, 6, e1751. Scholar
  35. 35.
    Dong, L. W., Yang, G. Z., Pan, Y. F., Chen, Y., Tan, Y. X., Dai, R. Y., Ren, Y. B., Fu, J., & Wang, H. Y. (2011). The oncoprotein p28GANK establishes a positive feedback loop in β-catenin signaling. Cell Research, 21(8), 1248–1261. Scholar
  36. 36.
    Zheng, T., Hong, X., Wang, J., Pei, T., Liang, Y., Yin, D., Song, R., Song, X., Lu, Z., Qi, S., Liu, J., Sun, B., Xie, C., Pan, S., Li, Y., Luo, X., Li, S., Fang, X., Bhatta, N., Jiang, H., & Liu, L. (2014). Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology, 59(3), 935–946. Scholar
  37. 37.
    Bai, Z., Tai, Y., Li, W., Zhen, C., Gu, W., Jian, Z., Wang, Q., Lin, J. E., Zhao, Q., Gong, W., Liang, B., Wang, C., & Zhou, T. (2013). Gankyrin activates IL-8 to promote hepatic metastasis of colorectal cancer. Cancer Research, 73(14), 4548–4558. Scholar
  38. 38.
    Pei, T., Li, Y., Wang, J., Wang, H., Liang, Y., Shi, H., Sun, B., Yin, D., Sun, J., Song, R., Pan, S., Sun, Y., Jiang, H., Zheng, T., & Liu, L. (2015). YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget, 6(19), 17206–17220.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Huang, S. J., Cheng, C. L., Chen, J. R., Gong, H. Y., Liu, W., & Wu, J. L. (2017). Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation. Biochemical and Biophysical Research Communications, 490(3), 1052–1058. Scholar
  40. 40.
    Sakurai, T., Yada, N., Hagiwara, S., Arizumi, T., Minaga, K., Kamata, K., Takenaka, M., Minami, Y., Watanabe, T., Nishida, N., & Kudo, M. (2017). Gankyrin induces STAT3 activation in tumor microenvironment and sorafenib resistance in hepatocellular carcinoma. Cancer Science, 108(10), 1996–2003. Scholar
  41. 41.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. Scholar
  42. 42.
    Park, T. J., Kim, H. S., Byun, K. H., Jang, J. J., Lee, Y. S., & Lim, I. K. (2001). Sequential changes in hepatocarcinogenesis induced by diethylnitrosamine plus thioacetamide in Fischer 344 rats: Induction of gankyrin expression in liver fibrosis, pRB degradation in cirrhosis, and methylation of p16(INK4A) exon 1 in hepatocellular carcinoma. Molecular Carcinogenesis, 30(3), 138–150.CrossRefPubMedGoogle Scholar
  43. 43.
    Jing, H., Zhang, G., Meng, L., Meng, Q., Mo, H., & Tai, Y. (2014). Gradually elevated expression of Gankyrin during human hepatocarcinogenesis and its clinicopathological significance. Scientific Reports, 4, 5503. Scholar
  44. 44.
    He, F., Chen, H., Yang, P., Wu, Q., Zhang, T., Wang, C., Wei, J., Chen, Z., Hu, H., Li, W., & Cao, J. (2016). Gankyrin sustains PI3K/GSK-3β/β-catenin signal activation and promotes colorectal cancer aggressiveness and progression. Oncotarget, 7(49), 81156–81171. Scholar
  45. 45.
    Ortiz, C. M., Ito, T., Tanaka, E., Tsunoda, S., Nagayama, S., Sakai, Y., Higashitsuji, H., Fujita, J., & Shimada, Y. (2008). Gankyrin oncoprotein overexpression as a critical factor for tumor growth in human esophageal squamous cell carcinoma and its clinical significance. International Journal of Cancer, 122(2), 325–332.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang, W. P., Sun, Y., Lu, Q., Zhao, J. B., Wang, X. J., Chen, Z., Ni, Y. F., Wang, J. Z., Han, Y., Zhang, Z. P., Yan, X. L., & Li, X. F. (2017). Gankyrin promotes epithelial-mesenchymal transition and metastasis in NSCLC through forming a closed circle with IL-6/ STAT3 and TGF-β/SMAD3 signaling pathway. Oncotarget, 8(4), 5909–5923. Scholar
  47. 47.
    Zeng, Y. C., Sun, D., Li, W. H., Zhao, J., & Xin, Y. (2017). Gankyrin promotes the proliferation of gastric cancer and is associated with chemosensitivity. Tumour Biology, 39(6), 1010428317704820. Scholar
  48. 48.
    Kim, T. D., Oh, S., Lightfoot, S. A., Shin, S., Wren, J. D., & Janknecht, R. (2016). Upregulation of PSMD10 caused by the JMJD2A histone demethylase. International Journal of Clinical and Experimental Medicine, 9(6), 10123–10134.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chapman, A. M., & McNaughton, B. R. (2015). Synthetic proteins potently and selectively bind the oncoprotein gankyrin, modulate its interaction with S6 ATPase, and suppress gankyrin/MDM2-dependent ubiquitination of p53. ACS Chemical Biology, 10(8), 1880–1886. Scholar
  50. 50.
    Chattopadhyay, A., O’Connor, C. J., Zhang, F., Galvagnion, C., Galloway, W. R., Tan, Y. S., Stokes, J. E., Rahman, T., Verma, C., Spring, D. R., & Itzhaki, L. S. (2016). Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell. Scientific Reports, 6, 23732. Scholar
  51. 51.
    Li, H., Fu, X., Chen, Y., Hong, Y., Tan, Y., Cao, H., Wu, M., & Wang, H. (2005). Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 128(7), 2029–2041.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jun Fujita
    • 1
  • Toshiharu Sakurai
    • 2
  1. 1.Department of Radiation Genetics, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Gastroenterology and Hepatology, Faculty of MedicineKindai UniversityOsakaJapan

Personalised recommendations