Advertisement

Creating Products and Services in Bioinformatics

  • Radu Cristian TomaEmail author
  • Laura Dorina Dinu
  • Camelia Filofteia Diguta
Chapter

Abstract

In this chapter, bioinformatics is defined, emphasizing the interdisciplinary aspects. There is detailed information regarding the bioinformatics fields such as database design and data mining, sequencing, gene and protein expression, structural bioinformatics, phylogenetic tree construction, biological networks, and their practical application. In addition, tools provided by bioinformatics are described (open-sources and web-based services in bioinformatics, educational programs, and training platforms in bioinformatics). The chapter analyze the path of a bioinformatics student toward entrepreneurship in the US context versus the European context.

Keywords

Bioinformatics Databases Health sciences Precision medicine Translational bioinformatics Pharmacoinformatics Microbiomics Oncology Biomedical computing 

References

  1. Aerobic Capacity. https://xcodelife.co/. Accessed 2 Feb 2019
  2. Angel. https://angel.co/station-x. Accessed 27 Feb 2019
  3. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603CrossRefGoogle Scholar
  4. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW (2018) Genbank. Nucleic Acids Res 46:D41–D47CrossRefGoogle Scholar
  5. Bison. http://www.bison-seqtech.dk. Accessed 23 Feb 2019
  6. Cancer Genomics Cloud. http://www.cancer-genomicscloud.org. Accessed 24 Feb 2019
  7. CARD. https://card.mcmaster.ca. Accessed 2 Feb 2019
  8. Conversa. https://conversahealth.com. Accessed 2 Feb 2019
  9. Cook CE, Lopez R, Stroe O, Cochrane G, Brooksbank C, Birney E, Apweiler R (2019) The European Bioinformatics Institute in 2018: tools, infrastructure and training. Nucleic Acids Res 47:D15–D22CrossRefGoogle Scholar
  10. Coursera. https://www.coursera.org/. Accessed 23 Feb 2019
  11. Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, Cummins C, Davidson C, Dodiya KJ, Gall A, Girón CG, Gil L, Grego T, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, Kay M, Laird MR, Lavidas I, Liu Z, Loveland JE, Marugán JC, Maurel T, McMahon AC, Moore B, Morales J, Mudge JM, Nuhn M et al (2019) Ensembl 2019. Nucleic Acids Res 47:D745–D751CrossRefGoogle Scholar
  12. DE Shaw Research. https://www.deshawresearch.com. Accessed 24 Feb 2019
  13. DeskGen. https://www.deskgen.com. Accessed 27 Feb 2019
  14. DeskGen. https://www.deskgen.com/landing/#/. Accessed 21 Feb 2019
  15. DNAdigest. http://dnadigest.org/index.html. Accessed Feb 2019
  16. DNAnexus. https://www.dnanexus.com. Accessed 27 Feb 2019
  17. EagleGenomics. https://www.eaglegenomics.com. Accessed 25 Feb 2019
  18. EagleGenomics. https://www.eaglegenomics.com. Accessed 27 Feb 2019
  19. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  20. Edu.t. https://edu.t-bio.info/. Accessed 22 Feb 2019
  21. Elypta. https://elypta.com/science. Accessed 24 Feb 2019
  22. Episciences. https://www.epicsciences.com. Accessed 27 Feb 2019
  23. Gabella C, Durinx C, Appel R (2018) Funding knowledge bases: towards a sustainable funding model for the UniProt use case [version 2; referees: 3 approved]. F1000Research 6(ELIXIR):2051Google Scholar
  24. Genbox. https://www.genebox.me. Accessed 25 Feb 2019
  25. GeneStack. http://www.genestack.com/. Accessed 24 Feb 2019
  26. Genialis. https://www.genialis.com/. Accessed 25 Feb 2019
  27. Globe. https://globenewswire.com. Accessed 27 Feb 2019
  28. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A et al (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176CrossRefGoogle Scholar
  29. GTN Ltd. https://gtn.ai/index.html. Accessed 24 Feb 2019
  30. Harrison PW, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Holt S, Hussein A, Jayathilaka S, Kay S, Keane T et al (2019) The European nucleotide archive in 2018. Nucleic Acids Res 47:D84–D88Google Scholar
  31. Healy MJ et al (2016) Regulatory bioinformatics for food and drug safety. Regul Toxicol Pharmacol 80:342–347CrossRefGoogle Scholar
  32. Hesper B, Hogeweg P (1970) Bioinformatica: een werkconcept [Bioinformatics: a working concept]. Kameleon 1(6):28–29Google Scholar
  33. iProteos. http://www.iproteos.com. Accessed 24 Feb 2019
  34. Kodama Y, Mashima J, Kosuge T, Kaminuma E, Ogasawara O, Okubo K, Nakamura Y, Takagi T (2018) DNA data bank of Japan: 30th anniversary. Nucleic Acids Res 46:D30–D35CrossRefGoogle Scholar
  35. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549CrossRefGoogle Scholar
  37. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI et al (2018) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res.  https://doi.org/10.1093/nar/gky1100 CrossRefGoogle Scholar
  38. Prior. Auth now. https://priorauthnow.com. Accessed 2 Feb 2019
  39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO ((2013)) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefGoogle Scholar
  40. Repositive. https://repositive.io. Accessed 21 Feb 2019
  41. Ridom. https://www.ridom.de/seqsphere/. Accessed 2 Feb 2019
  42. Rosalind. http://rosalind.info/about/ Accessed 2 Feb 2019
  43. SecondGenome. https://www.secondgenome.com. Accessed 27 Feb 2019
  44. Seq. http://www.seqhepb.com. Accessed 27 Feb 2019
  45. Servant N et al (2014) Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet.  https://doi.org/10.3389/fgene.2014.00152
  46. Singer J et al (2017) Bioinformatics for precision oncology. Brief Bioinform. doi: https://doi.org/10.1093/bib/bbx143 CrossRefGoogle Scholar
  47. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613CrossRefGoogle Scholar
  48. Taboada EN et al (2017) Food safety in the age of next generation sequencing, bioinformatics, and open data access. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.00909
  49. Taly JF, Magis C, Bussotti G, Chang JM, Di Tommaso P, Erb I, Espinosa-Carrasco J, Kemena C, Notredame C (2011) Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat Protoc 6:1669–1682CrossRefGoogle Scholar
  50. Yoshida C et al (2016) The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One.  https://doi.org/10.1371/journal.pone.0147101 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Radu Cristian Toma
    • 1
    Email author
  • Laura Dorina Dinu
    • 1
  • Camelia Filofteia Diguta
    • 1
  1. 1.Faculty of BiotechnologiesUniversity of Agronomic Sciences and Veterinary Medicine of BucharestBucharestRomania

Personalised recommendations