Advertisement

Boiling

  • Amir FaghriEmail author
  • Yuwen Zhang
Chapter

Abstract

This chapter introduces the pool boiling curve and characterizes the various boiling regimes (evaporation/natural convection, nucleate, transition, and film boiling), followed by detailed discussions and an analysis of each pool boiling regime, critical heat flux, minimum heat flux, and direct numerical simulation of film boiling. The Leidenfrost phenomenon is also discussed in this chapter.

Supplementary material

References

  1. Avedisian, C. T. (1986). Bubble growth in superheated liquid droplets. In Encyclopedia of fluid mechanics. Houston, TX: Gulf Publishing Company.Google Scholar
  2. Avedisian, C. T., & Suresh, K. (1985). Analysis of non-explosive bubble growth within a superheated liquid droplet suspended in an immiscible liquid. Chemical Engineering Science, 40, 2249–2259.CrossRefGoogle Scholar
  3. Banerjee, D., & Dhir, V. K. (2001). Study of subcooled film boiling on a horizontal disc: Part I—Analysis. Journal of Heat Transfer, 123, 271–284.CrossRefGoogle Scholar
  4. Bankoff, S. G. (1958). Entrapment of gas in the spreading of liquid over a rough surface. AIChE Journal, 4, 24–26.CrossRefGoogle Scholar
  5. Berenson, P. J. (1961). Film boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 83, 351–356.CrossRefGoogle Scholar
  6. Berenson, P. J. (1962). Experiments on pool-boiling heat transfer. International Journal of Heat and Mass Transfer, 5, 985–999.CrossRefGoogle Scholar
  7. Bergles, A. E. (2005). Bora Mikic and pool boiling. In Proceedings of the 2005 ASME Summer Heat Transfer Conference, San Francisco, CA.Google Scholar
  8. Bergles, A. E., & Rohsenow, W. M. (1964). The determination of forced convection surface-boiling heat transfer. Journal of Heat Transfer, 86, 365–372.CrossRefGoogle Scholar
  9. Bernardin, J. D., & Mudawar, I. (2002). A cavity activation and bubble growth model of the Leidenfrost point. Journal of Heat Transfer, 124, 864–874.CrossRefGoogle Scholar
  10. Biance, A. L., Clanet, C., & Quere, D. (2003). Leidenfrost drops. Physics of Fluids, 15, 1632–1637.CrossRefGoogle Scholar
  11. Bromley, L. A. (1950). Heat transfer in stable film boiling. Chemical Engineering Progress, 46, 221–227.Google Scholar
  12. Cao, Y., Faghri, A., & Mahefkey, E. T. (1989). The thermal performance of heat pipes with localized heat input. International Journal of Heat and Mass Transfer, 32, 1279–1287.CrossRefGoogle Scholar
  13. Carey, V. P. (2016). Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment (3rd ed.). New York, NY: Taylor & Francis.Google Scholar
  14. Cess, R. D., & Sparrow, E. M. (1961a). Film boiling in a forced-convection boundary-layer flow. Journal of Heat Transfer, 83, 370–376.CrossRefGoogle Scholar
  15. Cess, R. D., & Sparrow, E. M. (1961b). Subcooled forced-convection film boiling on a flat plate. Journal of Heat Transfer, 83, 377–379.CrossRefGoogle Scholar
  16. Chandra, S., & Avedisian, C. T. (1991). On the collision of a droplet with a solid surface. Proceedings of Royal Society of London A, 432, 13–41.CrossRefGoogle Scholar
  17. Cole, R., & Rohsenow, W. M. (1969). Correlations for bubble departure diameters for boiling of saturated liquid. Chemical Engineering Progress, 65, 211–213.Google Scholar
  18. Cooper, M. G. (1984). Heat flow rates in saturated nucleate boiling—A wide ranging examination using reduced properties. In Advances in heat transfer (Vol. 16, pp. 157–239). Princeton, NJ: Academic Press.Google Scholar
  19. Dhir, V. (2005). Mechanistic prediction of nucleate boiling heat transfer—Achievable or a hopeless task. In M. Jakob (Eds.), Lecture in 2005 ASME Summer Heat Transfer Conference, San Francisco, CA.Google Scholar
  20. Dhir, V. K. (2018). Nucleate pool boiling. In F. Kulacki (Ed.), Handbook of thermal science and engineering. Cham: Springer.Google Scholar
  21. Eastman, R. E. (1984). Dynamics of bubble departure. In AIAA 1984 Thermophysics (pp. 1–5.), AIAA-1984-1707.Google Scholar
  22. Esmaeeli, A., & Tryggvason, G. (2001). Direct numerical simulations of boiling flows. In Proceedings of the Fourth International Conference on Multiphase Flow (ICMF-2001), New Orleans, LA.Google Scholar
  23. Esmaeeli, A., & Tryggvason, G. (2003). Computations of explosive boiling in microgravity. Journal of Scientific Computing, 19, 163–182.MathSciNetCrossRefGoogle Scholar
  24. Esmaeeli, A., & Tryggvason, G. (2004). Computations of film boiling. Part I: Numerical method. Int. J. Heat Mass Transfer, 47, 5451–5461.CrossRefGoogle Scholar
  25. Faghri, A. (2016). Heat pipe science and technology (2nd ed.). Columbia, MO: Global Digital Press.Google Scholar
  26. Faghri, A., Zhang, Y., & Howell, J. R. (2010). Advanced heat and mass transfer. Columbia, MO: Global Digital Press.Google Scholar
  27. Fritz, W. (1935). Maximum volume of vapor bubbles. Physikalishce Zeitschrift, 36, 379–384.Google Scholar
  28. Forster, D. E., & Greif, R. (1959). Heat transfer to a boiling liquid-mechanism and correlation. Journal of Heat Transfer, 81, 43–53.CrossRefGoogle Scholar
  29. Gorenflo, D. (1993). Pool boiling. In VDI heat atlas. Düsseldorf: VDI-Verlag.Google Scholar
  30. Gorenflo, D., Knabe, V., & Beiling, V. (1986). Bubble density on surface with nucleate boiling—Its influence on heat transfer and burnout heat flux at elevated saturation pressure. In Proceedings of the 8th International Heat Transfer Conference (Vol. 4, pp. 1995–2000), San Francisco, CA.Google Scholar
  31. Griffith, P., & Wallis, J. D. (1960). The role of surface conditions in nucleate boiling. The Chemical Engineering Progress Symposium Series, 56(30), 49–63.Google Scholar
  32. Han, Y. Y., & Griffith, P. (1965). The mechanism of heat transfer in nucleate pool boiling. I-bubble initiation, growth and departure. International Journal of Heat and Mass Transfer, 8, 887–904.CrossRefGoogle Scholar
  33. Hohl, R., Auracher, H., Blum, J., & Marquardt, W. (1996). Pool boiling heat transfer experiments with controlled wall temperature transients. In 2nd European Thermal Science and 14th UIT National Heat Transfer Conference, Rome (pp. 1647–1652).Google Scholar
  34. Howell, J. R., & Siegel, R. (1966). Incipience, growth, and detachment of boiling bubbles in saturated water from artificial nucleation site of known geometry and size. In Proceedings of the 3rd International Heat Transfer Conference, Chicago, IL (Vol. 4, pp. 12–23).Google Scholar
  35. Ivey, H. J. (1967). Relationship between bubble frequency, departure diameter and rise velocity in nucleate boiling. International Journal of Heat and Mass Transfer, 10, 1023–1040.CrossRefGoogle Scholar
  36. Jakob, M., & Linke, W. (1935). Heat transmission in the evaporation of liquids at vertical and horizontal surfaces. Physik Z., 36, 267–280.Google Scholar
  37. Judd, R. L., & Hwang, K. S. (1976). A comprehensive model for nucleate boiling heat transfer including microlayer evaporation. Journal of Heat Transfer, 98, 623–629.CrossRefGoogle Scholar
  38. Juric, D., & Tryggvason, G. (1998). Computations of boiling flow. International Journal of Multiphase Flow, 24, 387–410.CrossRefGoogle Scholar
  39. Jo, H. J., Yeom, H., Yoon, D. S., Duarte, J. P., & Corradini, M. L. (2018). Minimum heat flux (MHF) Behavior with different surface characteristics including structured surfaces and different surface energies. International Journal of Heat and Mass Transfer, 127, 414–421.CrossRefGoogle Scholar
  40. Kandilikar, S. G., Dhir, V. K., & Shoji, M. (1999). Handbook of phase change: Boiling and condensation. Philadelphia, PA: Taylor and Francis.Google Scholar
  41. Keshock, E. G., & Siegel, R. (1962). Forces acting on bubbles in nucleate boiling under normal and reduced gravity conditions. NASA TN D-2299.Google Scholar
  42. Klimenko, V. V. (1981). Film boiling on a horizontal plate-new correlation. International Journal of Heat and Mass Transfer, 24, 69–79.CrossRefGoogle Scholar
  43. Kocamustafaogullari, G., & Ishii, M. (1983). Interfacial area and nucleation site density in boiling systems. International Journal of Heat and Mass Transfer, 26, 1377–1387.CrossRefGoogle Scholar
  44. Koh, J. C. Y. (1962). Analysis of film boiling on vertical surfaces. Journal of Heat Transfer, 84, 55–62.CrossRefGoogle Scholar
  45. Kutateladze, S. S. (1948). On the transition to film boiling under natural convection. Kotloturbostroenie, 3, 10–12.Google Scholar
  46. Lee, R. C., & Nydahl, J. E. (1989). Numerical calculation of bubble growth in nucleate boiling from inception through departure. Journal of Heat Transfer, 111, 474–479.CrossRefGoogle Scholar
  47. Liang, G., & Mudawar, I. (2018a). Pool boiling critical heat flux (CHF)—Part 1: Review of mechanisms, models, and correlations. International Journal of Heat and Mass Transfer, 117, 1352–1367.CrossRefGoogle Scholar
  48. Liang, G., & Mudawar, I. (2018b). Pool boiling critical heat flux (CHF)—Part 2: Assessment of models and correlations. International Journal of Heat and Mass Transfer, 117, 1368–1383.CrossRefGoogle Scholar
  49. Lienhard, J. H., & Dhir, V. K. (1973). Extended hydrodynamic theory of the peak and minimum heat fluxes. NASA CR-2270.Google Scholar
  50. Lienhard, J. H. (2011). A heat transfer textbook (4th ed.). Mineola, NY: Dover Civil and Mechanical Engineering.Google Scholar
  51. Lienhard, J. H., & Witte, L. C. (1985). An historical review of the hydrodynamic theory of boiling. Reviews in Chemical Engineering, 3, 187–280.CrossRefGoogle Scholar
  52. Lorenz, J. J., Mikic, B. B., & Rohsenow, W. M. (1974). The effect of surface conditions on boiling characteristics. In Proceedings of 5th International Heat Transfer Conference (Vol. 1, pp. 35–39).Google Scholar
  53. Mahadevan, L., & Pomeau, Y. (1999). Rolling droplets. Physics of Fluids, 11, 2449–2453.MathSciNetCrossRefGoogle Scholar
  54. Malenkov, I. G. (1971). The frequency of vapor bubble separation as function of bubble size. Fluid Mechanics: Soviet Research, 1, 36–42.Google Scholar
  55. Mikic, B. B., & Rohsenow, W. M. (1969). A new correlation of pool-boiling data including the effect of heating surface characteristics. Journal of Heat Transfer, 91, 245–250.CrossRefGoogle Scholar
  56. Mikic, B. B., Rohsenow, W. M., & Griffith, P. (1970). On bubble growth rate. International Journal of Heat and Mass Transfer, 13, 657–666.CrossRefGoogle Scholar
  57. Mizukami, K. (1975). Entrapment of vapor in re-entrant cavities. Letters in Heat and Mass Transfer, 2, 279–284.CrossRefGoogle Scholar
  58. Mukherjee, A., & Dhir, V. K. (2004). Study of lateral merger of vapor bubble during nucleate pool boiling. Journal of Heat Transfer, 126, 1023–1039.CrossRefGoogle Scholar
  59. Nakayama, A. (1986). Subcooled forced convection film boiling on plane and axisymmetric bodies in the presence of pressure gradient. AIAA Journal, 24, 230–236.CrossRefGoogle Scholar
  60. Nguyen, T. K., & Avedisian, C. T. (1987). Numerical solution for film evaporation of a spherical liquid droplet on an isothermal and adiabatic surface. International Journal of Heat and Mass Transfer, 30, 1497–1509.CrossRefGoogle Scholar
  61. Nishikawa, K., Ito, T., & Matsumoto, K. (1976). Investigation of variable thermophysical property problem concerning pool film boiling from vertical plate with prescribed uniform temperature. International Journal of Heat and Mass Transfer, 19, 1173–1181.CrossRefGoogle Scholar
  62. Nishio, A. (1985). Stability of pre-existing vapor nucleus in uniform temperature field. Transactions of JSME, Series B, 54–303, 1802–1807.Google Scholar
  63. Nukiyama, S. (1934). The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure. Journal of Japanese Society of Mechanical Engineering, 37 (pp. 367–374) (translated in International Journal of Heat and Mass Transfer, 9, 1419–1433 (1966)).Google Scholar
  64. Prosperetti, A., & Plesset, M. S. (1978). Vapor bubble growth in a superheated liquid. Journal of Fluid Mechanics, 85, 349–368.CrossRefGoogle Scholar
  65. Plesset, M. S., & Sadhal, S. S. (1979). An analytical estimate of the microlayer thickness in nucleate boiling. Journal of Heat Transfer, 101, 180–182.CrossRefGoogle Scholar
  66. Plesset, M. S., & Zwick, S. A. (1954). The growth of vapor bubble in superheated liquids. Journal of Applied Physics, 25, 493–500.MathSciNetCrossRefGoogle Scholar
  67. Rohsenow, W. M. (1952). A method for correlating heat-transfer data for surface boiling of liquids. Transactions of ASME, 74, 969–976.Google Scholar
  68. Shin, S., & Juric, D. (2002). Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. Journal of Computational Physics, 180, 427–470.CrossRefGoogle Scholar
  69. Sideman, S., & Isenberg, J. (1967). Direct contact heat transfer with change of phase: Bubble growth in three-phase systems. Desalination, 2, 207–214.CrossRefGoogle Scholar
  70. Son, G., & Dhir, V. K. (1997). Numerical simulation of saturated film boiling on a horizontal surface. Journal of Heat Transfer, 119, 525–533.CrossRefGoogle Scholar
  71. Son, G., & Dhir, V. K. (1998). Numerical simulation of film boiling near critical pressures with a level set method. Journal of Heat Transfer, 120, 183–192.CrossRefGoogle Scholar
  72. Son, G., Ramanujapu, N., & Dhir, V. K. (2002). Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling. Journal of Heat Transfer, 124, 51–62.CrossRefGoogle Scholar
  73. Sparrow, E. M., & Cess, R. D. (1962). The effect of subcooled liquid on laminar film boiling. Journal of Heat Transfer, 84, 149–156.CrossRefGoogle Scholar
  74. Stephan, K. (1992). Heat transfer in condensation and boiling. Berlin: Springer.CrossRefGoogle Scholar
  75. Thome, J. R. (2016). The heat transfer engineering data book III. Ulm: Wieland-Werke AG.Google Scholar
  76. Utaka, Y., Kashiwabara, Y., & Ozak, M. (2013). Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. International Journal of Heat and Mass Transfer, 57(1), 222–230.CrossRefGoogle Scholar
  77. Van Stralen, S. J. D., Sohal, M. S., Cole, R., & Sluyter, W. M. (1975a). Bubble growth rates in pure and binary systems: Combined effects of relaxation and evaporation microlayers. International Journal of Heat and Mass Transfer, 18, 453–467.CrossRefGoogle Scholar
  78. Van Stralen, S. J. D., Cole, R., Sluyter, W. M., & Sohal, M. S. (1975b). Bubble growth rates in nucleate boiling of water at subatmospheric pressures. International Journal of Heat and Mass Transfer, 18, 655–669.CrossRefGoogle Scholar
  79. Wang, C. H., & Dhir, V. K. (1993a). On the gas entrapment and nucleation density during pool boiling of saturated water. Journal of Heat Transfer, 115, 670–679.CrossRefGoogle Scholar
  80. Wang, C. H., & Dhir, V. K. (1993b). Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Journal of Heat Transfer, 115, 659–669.CrossRefGoogle Scholar
  81. Welch, S. W. J. (1998). Direct simulation of vapor bubble growth. International Journal of Heat and Mass Transfer, 41, 1655–1666.CrossRefGoogle Scholar
  82. Welch, S. W. J., & Wilson, J. J. (2000). A volume of fluid based method for fluid flows with phase change. Journal of Computational Physics, 160, 662–682.CrossRefGoogle Scholar
  83. Witte, L. C., & Lienhard, I. H. (1982). On the existence of two ‘transition’ boiling curves. International Journal of Heat and Mass Transfer, 25, 771–779.CrossRefGoogle Scholar
  84. Zuber, N. (1959). Hydrodynamic aspects of boiling heat transfer. USAEC Report AECU-4439.Google Scholar
  85. Zuber, N., Tribus, M., & Westwater, J. W. (1961). The Hydrodynamic crisis in pool boiling of saturated and subcooled liquids. In International Development in Heat Transfer: Proceedings of 1961–62 International Heat Transfer Conference, Boulder, CO (pp. 230–236).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations