• Amir FaghriEmail author
  • Yuwen Zhang


This chapter begins with a discussion of the two main modes of liquid droplet embryo formation in condensation: homogeneous and heterogeneous, followed by a detailed examination of dropwise and filmwise condensation with different approximations and methods.

Supplementary material


  1. Asali, J. C., Hanratty, T. J., & Andreuss, P. (1985). Interfacial drag and film height for vertical annular flow. AIChE Journal, 31(6), 895–902.CrossRefGoogle Scholar
  2. Bejan, A. (1991). Film condensation on a upward facing plate with free edges. International Journal of Heat and Mass Transfer, 34, 578–582.CrossRefGoogle Scholar
  3. Brauer, H. (1956). Stromung und Warmeubergang bei Reiselfilmen. VDI Forschung, 22, 1–40.Google Scholar
  4. Butterworth, D. (1981). Simplified methods for condensation on a vertical surface with vapor shear (UKAEA Report). AERE-R9683.Google Scholar
  5. Butterworth, D. (1983). Film condensation of pure vapor. Heat exchanger handbook, chapter 2.6.2. Washington, DC: Hemisphere.Google Scholar
  6. Carey, V. P. (2016). Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment (3rd ed.). New York, NY: Taylor & Francis.Google Scholar
  7. Carpenter, F. S., & Colburn, A. P. (1951). The effect of vapor velocity on condensation inside tubes, in Proceedings of General Discussion of Heat Transfer (pp. 20–26). Institute of Mechanical Engineers and American Society of Mechanical Engineers.Google Scholar
  8. Chun, K. R., & Seban, R. A. (1971). Heat transfer to evaporating liquid films. Journal of Heat Transfer, 93, 391–396.CrossRefGoogle Scholar
  9. Collier, J. G., & Thome, J. R. (1994). Convection boiling and condensation (3rd ed.). Oxford: Oxford University Press.Google Scholar
  10. Eucken, A. (1937). Energie- und Stoffaustausch an Grenzflächen. Naturwissenschaften, 25, 209–219.CrossRefGoogle Scholar
  11. Faghri, A. (1986). Turbulent film condensation in a tube with cocurrent and countercurrent vapor flow, in AIAA Paper No. 86-1354.Google Scholar
  12. Faghri, A. (2016). Heat pipe science & technology (2nd ed.). Columbia, MO: Global Digital Press.Google Scholar
  13. Faghri, A., Chen, M. M., & Morgan, M. (1989). Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons. Journal of Heat Transfer, 111(3), 611–618.CrossRefGoogle Scholar
  14. Fujii, T. (1991). Theory of laminar film condensation. New York, NY: Springer.CrossRefGoogle Scholar
  15. Graham, C., & Griffith, P. (1973). Drop size distribution and heat transfer in dropwise condensation. International Journal of Heat and Mass Transfer, 16, 337–346.CrossRefGoogle Scholar
  16. Griffith, P. (1983). Dropwise condensation. In E. U. Schlunder (Ed.), Heat exchange design handbook, chapter 2.6.5 (Vol. 2). New York, NY: Hemisphere Publishing.Google Scholar
  17. Habib, I. S., & Na, T. P. (1974). Prediction of heat transfer pipe flow with constant wall temperature. Journal of Heat Transfer, 96, 253–254.CrossRefGoogle Scholar
  18. Harley, C., & Faghri, A. (1994). Transient two-dimensional gas-loaded heat pipe analysis. Journal of Heat Transfer, 116, 716–723.CrossRefGoogle Scholar
  19. Hewitt, G. F., Bott, T. R., & Shires, G. L. (1994). Process heat transfer. Boca Raton, FL: CRC Press.Google Scholar
  20. Kutateladze, S. S. (1982). Semi-empirical theory of film condensation of pure vapors. International Journal of Heat and Mass Transfer, 25, 653–660.CrossRefGoogle Scholar
  21. Labuntsov, D. A. (1957). Heat transfer in film condensation of pure steam on vertical surfaces and horizontal tubes. Teploenergetika, 4, 72–80.Google Scholar
  22. Lin, L., & Faghri, A. (1998). Condensation in a rotating stepped wall heat pipe with hysteretic annular flow. Journal of Thermophysics and Heat Transfer, 12(1), 94–99.CrossRefGoogle Scholar
  23. McCormick, J. L., & Baer, E. (1963). On the mechanism of heat transfer in dropwise condensation. Journal of Colloid Science, 18, 208–216.CrossRefGoogle Scholar
  24. Mikic, B. B. (1969). On mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 12, 1311–1323.CrossRefGoogle Scholar
  25. Nusselt, W. (1916). Die Oberflächenkondensation des Wasserdampfes. Z. Vereins deutscher Ininuere, 60, 541–575.Google Scholar
  26. Rohsenow, W. M. (1956). Heat transfer and temperature distribution in laminar film condensation. Transactions of the ASME, 78, 1645–1648.Google Scholar
  27. Rohsenow, W. M., Webber, J. H., & Ling, T. (1956). Effect of vapor velocity on laminar and turbulent film condensation. Transactions of the ASME, 78, 1637–1643.Google Scholar
  28. Seban, R. (1954). Remarks on film condensation with turbulent flow. Transactions of the ASME, 76, 299–303.Google Scholar
  29. Shafrin, E. G., & Zisman, W. A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. Journal of Physical Chemistry, 64, 519–524.CrossRefGoogle Scholar
  30. Shekriladze, I. G., & Gomelauri, V. I. (1966). Theoretical study of laminar film condensation of flow vapour. International Journal of Heat and Mass Transfer, 9, 581–591.CrossRefGoogle Scholar
  31. Stephan, K. (1992). Heat transfer in condensation and boiling. Berlin: Springer.CrossRefGoogle Scholar
  32. Szablewski, W. (1968). Turbulent Parallelstromunjen. Zeitshr. Ang. Math Mech., 48, 35.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations