Advertisement

Melting and Solidification

  • Amir FaghriEmail author
  • Yuwen Zhang
Chapter

Abstract

Solid–liquid phase changes, including melting and solidification, are treated in this chapter, starting with the classification of solid–liquid phase changes and generalized boundary conditions at the interface. Different approaches to the solution of melting and solidification problems are introduced, including exact, integral, and numerical solutions. Finally, solidification in contact melting is presented.

Supplementary material

References

  1. Bardsley, W., Hurle, D. T. J., & Mullin, T. B. (1979). Crystal growth: A tutorial approach. Amsterdam: North-Holland.Google Scholar
  2. Beckerman, C. & Viskanta, R. (1988). An experimental study of solidification of binary mixture with double diffusion in the liquid. In Proceedings of the 1988 National Heat Transfer Conference, vol. 3, pp. 67–79.Google Scholar
  3. Beckermann, C., & Wang, C. Y. (1995). multi-phase/-scale modeling of transport phenomena in alloy solidification. Annual Review of Heat Transfer, 6, 115–198.CrossRefGoogle Scholar
  4. Bejan, A. (1994). Contact melting heat transfer and lubrication. Advances in Heat Transfer, 24, 1–38.CrossRefGoogle Scholar
  5. Bejan, A., 2013, Convection heat transfer (4th ed.). New York: Wiley Inc.Google Scholar
  6. Bonacina, C., Comini, G., Fasano, A., & Primicerio, A. (1973). Numerical solution of phase change problems. International Journal of Heat and Mass Transfer, 16, 1285–1832.Google Scholar
  7. Braga, S. L., & Viskanta, R. (1990). Solidification of a binary solution on a cold isothermal surface. International Journal of Heat and Mass Transfer, 33, 745–754.CrossRefGoogle Scholar
  8. Budhia, H., & Kreith, F. (1973). Heat transfer with melting or freezing in a wedge. International Journal of Heat and Mass Transfer, 16, 195–211.CrossRefGoogle Scholar
  9. Cao, Y., & Faghri, A. (1990). A numerical analysis of phase change problem including natural convection. Journal of Heat Transfer, 112, 812–815.CrossRefGoogle Scholar
  10. Cao, W. Z., & Poulikakos, D. (1991). Freezing of a binary alloy saturating a packed bed of spheres. Journal of Thermophysics and Heat Transfer, 5, 46–53.CrossRefGoogle Scholar
  11. Cho, S. H., & Sunderland, J. E. (1981). Approximate temperature distribution for phase change of semi-infinite body. Journal of Heat Transfer, 103, 401–403.CrossRefGoogle Scholar
  12. Crank, J. (1984). Free and moving boundary problems. Oxford: Clarendon Press.zbMATHGoogle Scholar
  13. Damronglerd, P., Zhang, Y., & Yang, M. (2012). Numerical simulation of solidification of liquid copper saturated in porous structures fabricated by sintered steel particles. International Journal of Numerical Methods for Heat and Fluid Flow, 22(1), 94–111.CrossRefGoogle Scholar
  14. Dong, Z. F., Chen, Z. Q., Wang, Q. J., & Ebadian, M. A. (1991). Experimental and analytical study of contact melting in a rectangular cavity. Journal of Thermophysics and Heat Transfer, 5, 347–354.CrossRefGoogle Scholar
  15. Eckert, E. R. G. & Drake, R. M. (1987). Analysis of heat and mass transfer. Washington, DC: Hemisphere.Google Scholar
  16. El-Genk, M. S., & Cronenberg, A. W. (1979). Solidification in a semi-infinite region with boundary condition of the second kind: an exact solution. Letters in Heat and Mass Transfer, 6, 321–327.CrossRefGoogle Scholar
  17. Faghri, A., Zhang, Y., & Howell, J. R. (2010). Advanced heat and mass transfer. Columbia, MO: Global Digital Press.Google Scholar
  18. Fang, L. J., Cheung, F. B., Linehan, J. H., & Pedersen, D. R. (1984). Selective freezing of a dilute salt solution on a cold ice surface. Journal of Heat Transfer, 106, 385–393.CrossRefGoogle Scholar
  19. Goodman, T. R. (1958). The heat-balance integral and its application to problems involving a change of phase. Transactions of ASME, 80, 335–342.Google Scholar
  20. Hirata, T., Makino, Y., & Kaneko, Y. (1991). Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule. International Journal of Heat and Mass Transfer, 34, 3097–3106.CrossRefGoogle Scholar
  21. Hobbs, P. V. (1974). Ice physics. Oxford: Clarendon Press.Google Scholar
  22. Ma, Z. H., & Zhang, Y. (2006). Solid velocity correction schemes for a temperature transforming model for convection phase change. International Journal of Numerical Methods for Heat and Fluid Flow, 16(2), 204–225.CrossRefGoogle Scholar
  23. Ozisik, M. N. (1993). Heat conduction (2nd ed.). New York: Wiley-Interscience.Google Scholar
  24. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.zbMATHGoogle Scholar
  25. Poots, G. (1962). An approximate treatment of heat conduction problem involving a two-dimensional solidification front. International Journal of Heat and Mass Transfer, 5, 339–348.CrossRefGoogle Scholar
  26. Rathjen, K. A., & Jiji, L. M. (1971). Heat conduction with melting or freezing in a corner. Journal of Heat Transfer, 93, 101–109.CrossRefGoogle Scholar
  27. Shamsunder, N., & Sparrow, E. M. (1975). Analysis of multidimensional conduction phase change via the enthalpy model. Journal of Heat Transfer, 97, 333–340.CrossRefGoogle Scholar
  28. Sultana, K. R., Dehghani, S. R., Pope, K., & Muzychka, Y. S. (2018). Numerical techniques for solving solidification and melting phase change problems. Numer. Heat Transfer, B, 73(3), 129–145.CrossRefGoogle Scholar
  29. Tien, R. H., & Geiger, G. E. (1967). A heat-transfer analysis of the solidification of a binary eutectic system. Journal of Heat Transfer, 91, 230–234.CrossRefGoogle Scholar
  30. Viskanta, R. (1988). Heat transfer during melting and solidification of metals. Journal of Heat Transfer, 110, 1205–1219.CrossRefGoogle Scholar
  31. Voller, V. R. (1997). An overview of numerical methods for solving phase change problems. In W. J. Minkowycz, & E. M. Sparrow (Eds.), Advances in numerical heat transfer (vol. 1). Basingstoke: Taylor & Francis.Google Scholar
  32. Voller, V. R., Cross, M., & Markatos, N. C. (1987). An enthalpy method for convection/diffusion phase change. International Journal for Numerical Methods in Engineering, 24, 271–284.CrossRefGoogle Scholar
  33. Wang, Q. J., Wang, C., & Chen, Z. Q. (1991). Heat transfer during superheated solidification around bare tube and finned tubes. In Experimental heat transfer, fluid mechanics and thermodynamics 1991 (pp. 1171–1176). Elsevier Science Publishing Co., Inc.Google Scholar
  34. Xiao, B., & Zhang, Y. (2007). Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning. Journal of Physics. D. Applied Physics, 40(21), 6725–6734.CrossRefGoogle Scholar
  35. Zeng, X., & Faghri, A. (1994). Temperature-transforming model for binary solid-liquid phase-change problems part I: Physical and numerical scheme. Numerical Heat Transfer Part B, 25, 467–480.CrossRefGoogle Scholar
  36. Zhang, Y., Chen, Z. Q., & Faghri, A. (1997). Heat transfer during solidification around a horizontal tube with internal convective cooling. Journal of Solar Energy Engineering, 119, 44–47.CrossRefGoogle Scholar
  37. Zhang, Y., Chen, Z., & Wang, Q. (1993). Analytical solution of melting in a subcooled semi-infinite sold with boundary conditions of the second kind. Journal of Thermal Science, 2, 111–115.CrossRefGoogle Scholar
  38. Zhang, Y., & Faghri, A. (1996a). Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. International Journal of Heat and Mass Transfer, 39, 717–724.CrossRefGoogle Scholar
  39. Zhang, Y., & Faghri, A. (1996b). Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. Journal of Enhanced Heat Transfer, 3, 119–127.CrossRefGoogle Scholar
  40. Zhang, Y., & Faghri, A. (1998). A thermal model for mushy zone formation in binary solutions. Journal of Solar Energy Engineering, 120, 144–147.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations