Advertisement

Interfacial Phenomena

  • Amir FaghriEmail author
  • Yuwen Zhang
Chapter

Abstract

This chapter introduces the interfacial concepts of surface tension, wetting phenomena, and contact angle, which are followed by a discussion on motion induced by capillarity. The interfacial balances and boun2dary conditions for mass, momentum, energy, and species for multicomponent and multiphase systems are presented. This chapter also delineates heat and mass transfer through the thin film region during evaporation and condensation, including the effect of interfacial resistance and disjoining pressure. The dynamics of interfaces, including stability and wave effects, are also presented in this chapter. Finally, a review is given on the numerical simulation of interfaces.

Supplementary material

References

  1. Benjamin, T. B. (1957). Wave formation in a laminar flow down an inclined plane. Journal of Fluid Mechanics, 16, 554–574.MathSciNetCrossRefGoogle Scholar
  2. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335–354.MathSciNetCrossRefGoogle Scholar
  3. Brauer, H. (1956). Stromung and Warmenbergang bei Rieselfilmen. In VDI Forschunsheft, Dusseldorf, 457.Google Scholar
  4. Buffone, C., Sefiane, K., & Christy, J. R. E. (2004). Experimental investigation of the hydrodynamics and stability of an evaporating wetting film placed in a temperature gradient. Applied Thermal Engineering, 24, 1157–1170.CrossRefGoogle Scholar
  5. Carey, V. P. (2016). Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment (3rd ed.). New York, NY: Taylor & Francis.Google Scholar
  6. Derjaguin, B. V. (1955). Definition of the concept of and magnitude of the disjoining pressure and its role in the statics and kinetics of thin layers of liquid. Kolloidny Zhurnal, 17, 191–197.Google Scholar
  7. Derjaguin, B. V. (1989). Theory of stability of colloids and thin films. New York, NY: Plenum.Google Scholar
  8. Faghri, A. (2016). Heat pipe science and technology (2nd ed.). Columbia, MO: Global Digital Press.Google Scholar
  9. Faghri, A., & Payvar, P. (1979). Transport to thin falling liquid films. Reg Journal of Energy Heat and Mass Transfer, 1, 153–173.Google Scholar
  10. Faghri, A., & Seban, R. A. (1985). Heat transfer in wavy liquid films. International Journal of Heat and Mass Transfer, 28, 506–508.CrossRefGoogle Scholar
  11. Glimm, J., Li, X. L., Liu, Y., & Zhao, N. (2001). Conservative front tracking and level set algorithms. In Proceedings of National Academic of Science: Applied Mathematics (Vol. 98, pp. 14198–14201).Google Scholar
  12. Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow. Physics of Fluids, 8, 2182–2189.MathSciNetCrossRefGoogle Scholar
  13. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225.CrossRefGoogle Scholar
  14. Holm, F. W., & Goplen, S. P. (1979). Heat transfer in the meniscus thin-film transition region. Journal of Heat Transfer, 101(3), 543–547.CrossRefGoogle Scholar
  15. Jamet, D., Torres, D., & Brackbill, J. U. (2002). On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method. Journal of Computational Physics, 182, 262–276.CrossRefGoogle Scholar
  16. Kapitza, P. L. (1964). Wave flow of thin layers of a viscous fluid. Kapitza, MacMillan, NY: Collected Papers of P.L.Google Scholar
  17. Khrustalev, D., & Faghri, A. (1994). Thermal analysis of a micro heat pipe. Journal of Heat Transfer, 116, 189–198.CrossRefGoogle Scholar
  18. Koizumi, Y., Enari, R., & Ohtake, H. (2005). Correlations of characteristics of waves on a film falling down on a vertical wall. In Proceeding of the 2005 ASME International Mechanical Engineering Congress and Exposition. Orlando, FL, November 5–11, 2005.Google Scholar
  19. Kucherov, R. Y., & Rikenglaz, L. E. (1960). The problem of measuring the condensation coefficient. Doklady Akademii Nauk SSSR, 133, 1130–1131.Google Scholar
  20. Kuramae, M., & Suzuki, M. (1993). Two-component heat pipes utilizing the Marangoni effect. Chemical Engineering of Japan, 26, 230–231.CrossRefGoogle Scholar
  21. Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81, 167–249.CrossRefGoogle Scholar
  22. Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (85th ed.). Boca Raton, FL: CRC Press.Google Scholar
  23. Lin, L., & Faghri, A. (1999). Heat transfer in the micro region of a rotating miniature heat pipe. International Journal of Heat and Mass Transfer, 42, 1363–1369.CrossRefGoogle Scholar
  24. Mills, A. F. (1965). The condensation of steam at low pressures (Report No. NSF GP-2520, Series No. 6, Issue No. 39). Berkeley: Space Sciences Laboratory, University of California, Berkeley.Google Scholar
  25. Nichols, B. D., & Hirt, C. W. (1975). Methods for calculating multidimensional, transient free surface flows past bodies. In Proceedings of the First International Conference on Numerical Ship Hydrodynamics. Gaithersburg, MD, October 20–23.Google Scholar
  26. Nosoko, T., Yoshimura, P. N., Nagata, T., & Oyakawa, K. (1996). Characteristics of two-dimensional waves on a falling film. Chemical Engineering Science, 51, 725–732.CrossRefGoogle Scholar
  27. Ojha, M., Chatterjee, A., Dalakos, G., Wayner, P. C., & Plawsky, J. L. (2010). Role of solid surface structure on evaporative phase change from a completely wetting corner meniscus. Physics of Fluids, 22, 052101.CrossRefGoogle Scholar
  28. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Washington, DC: Hemisphere.zbMATHGoogle Scholar
  29. Paul, B. (1962). Compilation of evaporation coefficients. ARSJ, 32, 1321–1328.Google Scholar
  30. Plawsky, J. L., Fedorov, A. G., Garimella, S. V., Ma, H. B., Maroo, S. C., Chen, L., et al. (2014). Nano and microstructures for thin-films evaporation: A review. Nanoscale and Microscale Thermophysical Engineering, 18(3), 251–269.CrossRefGoogle Scholar
  31. Potash, M., & Wayner, P. C. (1972). Evaporation from a two-dimensional extended meniscus. International Journal of Heat and Mass Transfer, 15, 1851–1863.CrossRefGoogle Scholar
  32. Rice, J., & Faghri, A. (2005a). A new computational method to track a liquid/vapor interface with mass transfer, demonstrated on the concentration driven evaporation from a capillary tube, and the Marangoni effect. In Proceeding of the 2005 ASME International Mechanical Engineering Congress and Exposition. Orlando, FL, November 5–11.Google Scholar
  33. Rice, J., & Faghri, A. (2005b). A new computational method for free surface problems. In Proceeding of the 2005 ASME Summer Heat Transfer Conference. San Francisco, CA, July 17–22.Google Scholar
  34. Rogovan, I. A., Olevskii, V. M., & Runova, N. G. (1969). Measurement of the parameters of film type wavy flow on a vertical plate. Theoretical Foundations of Chemical Engineering, 3, 164–171.Google Scholar
  35. Savino, R., Francescantonioa, N., Fortezzab, R., & Abe, Y. (2007). Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications. Acta Astronautica, 61, 16–26.CrossRefGoogle Scholar
  36. Schrage, R. W. (1953). A thermal study of interface mass transfer. New York: Columbia University Press.CrossRefGoogle Scholar
  37. Shopov, P. J., Minev, P. D., Bazhekov, I. B., & Zapryanov, Z. D. (1990). Interaction of a deformable bubble with a rigid wall at moderate Reynolds numbers. Journal of Fluid Mechanics, 219, 241–271.CrossRefGoogle Scholar
  38. Silver, R. S., & Simpson, H. C. (1961). The condensation of superheated steam. In Proceedings of the Conference on National Engineering Laboratory. Glasgow, Scotland.Google Scholar
  39. Stepanov, V. G., Volyak, L. D., & Tarlakov, Y. V. (1977). Wetting contact angles for some systems. Journal of Engineering Physics and Thermophysics, 32, 1000–1003.Google Scholar
  40. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., et al. (2001). A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 169, 707–759.MathSciNetCrossRefGoogle Scholar
  41. Yang, J., Han, J., Isaacson, K., & Kwok, D. Y. (2003). Effects of surface defects, polycrystallinity, and nanostructure of self-assembled monolayers for octadecanethiol adsorbed on to Au on wetting and its surface energetic interpretation. Langmuir, 19, 9231–9238.CrossRefGoogle Scholar
  42. Youngs, D. L. (1982). Time-dependent multimaterial flow with large fluid distortion. In K. W. Morton & M. J. Baines (Eds.), Numerical methods for fluid dynamics (pp. 273–285). Cambridge: Academic Press.Google Scholar
  43. Yaws, C. L. (1992). Thermodynamic and physical property data. Houston, Texas: Gulf Publication Co.Google Scholar
  44. Zhang, Y., & Faghri, A. (2008). Advances and unresolved issues in pulsating heat pipes. Heat Transfer Engineering, 29(1), 20–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations