Fundamentals of Multiphase Heat Transfer and Flow pp 189-256 | Cite as

# Interfacial Phenomena

## Abstract

This chapter introduces the interfacial concepts of surface tension, wetting phenomena, and contact angle, which are followed by a discussion on motion induced by capillarity. The interfacial balances and boun2dary conditions for mass, momentum, energy, and species for multicomponent and multiphase systems are presented. This chapter also delineates heat and mass transfer through the thin film region during evaporation and condensation, including the effect of interfacial resistance and disjoining pressure. The dynamics of interfaces, including stability and wave effects, are also presented in this chapter. Finally, a review is given on the numerical simulation of interfaces.

## Supplementary material

## References

- Benjamin, T. B. (1957). Wave formation in a laminar flow down an inclined plane.
*Journal of Fluid Mechanics,**16,*554–574.MathSciNetCrossRefGoogle Scholar - Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension.
*Journal of Computational Physics,**100,*335–354.MathSciNetCrossRefGoogle Scholar - Brauer, H. (1956). Stromung and Warmenbergang bei Rieselfilmen. In
*VDI Forschunsheft, Dusseldorf,*457.Google Scholar - Buffone, C., Sefiane, K., & Christy, J. R. E. (2004). Experimental investigation of the hydrodynamics and stability of an evaporating wetting film placed in a temperature gradient.
*Applied Thermal Engineering,**24,*1157–1170.CrossRefGoogle Scholar - Carey, V. P. (2016).
*Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment*(3rd ed.). New York, NY: Taylor & Francis.Google Scholar - Derjaguin, B. V. (1955). Definition of the concept of and magnitude of the disjoining pressure and its role in the statics and kinetics of thin layers of liquid.
*Kolloidny Zhurnal,**17,*191–197.Google Scholar - Derjaguin, B. V. (1989).
*Theory of stability of colloids and thin films*. New York, NY: Plenum.Google Scholar - Faghri, A. (2016).
*Heat pipe science and technology*(2nd ed.). Columbia, MO: Global Digital Press.Google Scholar - Faghri, A., & Payvar, P. (1979). Transport to thin falling liquid films.
*Reg Journal of Energy Heat and Mass Transfer,**1,*153–173.Google Scholar - Faghri, A., & Seban, R. A. (1985). Heat transfer in wavy liquid films.
*International Journal of Heat and Mass Transfer,**28,*506–508.CrossRefGoogle Scholar - Glimm, J., Li, X. L., Liu, Y., & Zhao, N. (2001). Conservative front tracking and level set algorithms. In
*Proceedings of National Academic of Science: Applied Mathematics*(Vol. 98, pp. 14198–14201).Google Scholar - Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow.
*Physics of Fluids,**8,*2182–2189.MathSciNetCrossRefGoogle Scholar - Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries.
*Journal of Computational Physics,**39,*201–225.CrossRefGoogle Scholar - Holm, F. W., & Goplen, S. P. (1979). Heat transfer in the meniscus thin-film transition region.
*Journal of Heat Transfer,**101*(3), 543–547.CrossRefGoogle Scholar - Jamet, D., Torres, D., & Brackbill, J. U. (2002). On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method.
*Journal of Computational Physics,**182,*262–276.CrossRefGoogle Scholar - Kapitza, P. L. (1964).
*Wave flow of thin layers of a viscous fluid*. Kapitza, MacMillan, NY: Collected Papers of P.L.Google Scholar - Khrustalev, D., & Faghri, A. (1994). Thermal analysis of a micro heat pipe.
*Journal of Heat Transfer,**116,*189–198.CrossRefGoogle Scholar - Koizumi, Y., Enari, R., & Ohtake, H. (2005). Correlations of characteristics of waves on a film falling down on a vertical wall. In
*Proceeding of*th*e 2005 ASME International Mechanical Engineering Congress and Exposition*. Orlando, FL, November 5–11, 2005.Google Scholar - Kucherov, R. Y., & Rikenglaz, L. E. (1960). The problem of measuring the condensation coefficient.
*Doklady Akademii Nauk SSSR,**133,*1130–1131.Google Scholar - Kuramae, M., & Suzuki, M. (1993). Two-component heat pipes utilizing the Marangoni effect.
*Chemical Engineering of Japan,**26,*230–231.CrossRefGoogle Scholar - Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation.
*Advances in Colloid and Interface Science,**81,*167–249.CrossRefGoogle Scholar - Lide, D. R. (Ed.). (2004).
*CRC handbook of chemistry and physics*(85th ed.). Boca Raton, FL: CRC Press.Google Scholar - Lin, L., & Faghri, A. (1999). Heat transfer in the micro region of a rotating miniature heat pipe.
*International Journal of Heat and Mass Transfer,**42,*1363–1369.CrossRefGoogle Scholar - Mills, A. F. (1965).
*The condensation of steam at low pressures*(Report No. NSF GP-2520, Series No. 6, Issue No. 39). Berkeley: Space Sciences Laboratory, University of California, Berkeley.Google Scholar - Nichols, B. D., & Hirt, C. W. (1975). Methods for calculating multidimensional, transient free surface flows past bodies. In
*Proceedings of the First International Conference on Numerical Ship Hydrodynamics*. Gaithersburg, MD, October 20–23.Google Scholar - Nosoko, T., Yoshimura, P. N., Nagata, T., & Oyakawa, K. (1996). Characteristics of two-dimensional waves on a falling film.
*Chemical Engineering Science,**51,*725–732.CrossRefGoogle Scholar - Ojha, M., Chatterjee, A., Dalakos, G., Wayner, P. C., & Plawsky, J. L. (2010). Role of solid surface structure on evaporative phase change from a completely wetting corner meniscus.
*Physics of Fluids,**22,*052101.CrossRefGoogle Scholar - Patankar, S. V. (1980).
*Numerical heat transfer and fluid flow*. Washington, DC: Hemisphere.zbMATHGoogle Scholar - Plawsky, J. L., Fedorov, A. G., Garimella, S. V., Ma, H. B., Maroo, S. C., Chen, L., et al. (2014). Nano and microstructures for thin-films evaporation: A review.
*Nanoscale and Microscale Thermophysical Engineering,**18*(3), 251–269.CrossRefGoogle Scholar - Potash, M., & Wayner, P. C. (1972). Evaporation from a two-dimensional extended meniscus.
*International Journal of Heat and Mass Transfer,**15,*1851–1863.CrossRefGoogle Scholar - Rice, J., & Faghri, A. (2005a). A new computational method to track a liquid/vapor interface with mass transfer, demonstrated on the concentration driven evaporation from a capillary tube, and the Marangoni effect. In
*Proceeding of the 2005 ASME International Mechanical Engineering Congress and Exposition*. Orlando, FL, November 5–11.Google Scholar - Rice, J., & Faghri, A. (2005b). A new computational method for free surface problems. In
*Proceeding of the 2005 ASME Summer Heat Transfer Conference*. San Francisco, CA, July 17–22.Google Scholar - Rogovan, I. A., Olevskii, V. M., & Runova, N. G. (1969). Measurement of the parameters of film type wavy flow on a vertical plate.
*Theoretical Foundations of Chemical Engineering,**3,*164–171.Google Scholar - Savino, R., Francescantonioa, N., Fortezzab, R., & Abe, Y. (2007). Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications.
*Acta Astronautica,**61,*16–26.CrossRefGoogle Scholar - Schrage, R. W. (1953).
*A thermal study of interface mass transfer*. New York: Columbia University Press.CrossRefGoogle Scholar - Shopov, P. J., Minev, P. D., Bazhekov, I. B., & Zapryanov, Z. D. (1990). Interaction of a deformable bubble with a rigid wall at moderate Reynolds numbers.
*Journal of Fluid Mechanics,**219,*241–271.CrossRefGoogle Scholar - Silver, R. S., & Simpson, H. C. (1961). The condensation of superheated steam. In
*Proceedings of the Conference on National Engineering Laboratory*. Glasgow, Scotland.Google Scholar - Stepanov, V. G., Volyak, L. D., & Tarlakov, Y. V. (1977). Wetting contact angles for some systems.
*Journal of Engineering Physics and Thermophysics,**32,*1000–1003.Google Scholar - Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., et al. (2001). A front-tracking method for the computations of multiphase flow.
*Journal of Computational Physics,**169,*707–759.MathSciNetCrossRefGoogle Scholar - Yang, J., Han, J., Isaacson, K., & Kwok, D. Y. (2003). Effects of surface defects, polycrystallinity, and nanostructure of self-assembled monolayers for octadecanethiol adsorbed on to Au on wetting and its surface energetic interpretation.
*Langmuir,**19,*9231–9238.CrossRefGoogle Scholar - Youngs, D. L. (1982). Time-dependent multimaterial flow with large fluid distortion. In K. W. Morton & M. J. Baines (Eds.),
*Numerical methods for fluid dynamics*(pp. 273–285). Cambridge: Academic Press.Google Scholar - Yaws, C. L. (1992).
*Thermodynamic and physical property data*. Houston, Texas: Gulf Publication Co.Google Scholar - Zhang, Y., & Faghri, A. (2008). Advances and unresolved issues in pulsating heat pipes.
*Heat Transfer Engineering,**29*(1), 20–44.CrossRefGoogle Scholar